【大数据学习篇8】 热门品类Top10分析

在HBase命令行工具中执行“list”命令,查看HBase数据库中的所有数据表。学习目标/Target

掌握热门品类Top10分析实现思路

掌握如何创建Spark连接并读取数据集

掌握利用Spark获取业务数据

掌握利用Spark统计品类的行为类型

掌握利用Spark过滤品类的行为类型

掌握利用Spark合并相同品类的行为类型

掌握利用Spark根据品类的行为类型进行排序

掌握将数据持久化到HBase数据库

熟悉通过Spark On YARN运行程序

概述

品类指商品所属分类,用户在访问电商网站时,通常会产生很多行为,例如查看商品的信息、将感兴趣的商品加入购物车和购买商品等,这些行为都将作为数据被网站存储。本章我们将通过对电商网站存储的用户行为数据进行分析,从而统计出排名前10的热门品类。

1. 数据集分析

某电商网站2019年11月产生的用户行为数据存储在文件user_session.txt,该文件中的每一行数据都表示一个用户行为。

{"user_session":"0000007c-adbf-4ed7-af17-d1fef9763d67","event_type":"view","category_id":"2053013553090134275", "user_id":"560165420","product_id":"8900305","address_name":"Maryland","event_time":"2019-11-18 09:16:19"}

user_session:用于标识用户行为的唯一值。

event_type:表示用户行为的类型,包括view(查看)、cart(加入购物车)和purchase(购买)行为。

category_id:表示商品品类ID。

user_id:表示用户ID。

product_id:表示商品ID。

address_name:表示产生事件的区域。

event_time:表示产生事件的具体时间。

2. 实现思路分析

                

 分别统计各个品类商品的查看次数、 加入购物车次数以及购买次数。

 将同一品类中商品的查看、加入购物车 以及购买次数进行合并。

           

        自定义排序规则按照各个品类中商品的查看、 加入购物车和购买次数进行降序排序,获取 排名前10的品类,就是热门品类Top10。排 序时,优先按照各个品类商品的查看次数降 序排列,如果查看次数相同,则按照各个品 类商品的加入购物车次数进行降序排列。如 果查看次数和加入购车次数都相同,那么按 照各品类商品的购买次数进行降序排列。

       

将同一品类中商品的查看、加入购物车和 购买次数映射到自定义排序规则中进行排 序处理。         

 

        读取数据集中的行为类型(event_type)和品类ID(category_id)数据,为了便于后续聚合处理时,将相同Key的Value值进行累加,计算每个品类中不同行为出现的总次数,这里需要对输出结果的数据格式进行转换处理,将行为类型和品类ID作为Key,值1作为Value。 

统计各个品类的查看、加入购物车和购买次数。

        将聚合结果进行过滤处理,并分为三部分数据,分别是各个品类查看次数、各个品类加入购物车次数和各个品类购买次数。对过滤后的三部分数据进行转换处理,去除数据中的行为类型字段。此步目的是为了后续合并操作时,明确同一品类中不同行为类型所处位置。

        将Key值相同的Value进行合并处理,目的是为了将相同品类的查看次数、加入购物车次数和购买次数合并到一行。

         对每个品类中查看次数(viewcount)、加入购物车次数(cartcount)和购买次数(purchasecount)进行排序处理,在排序过程会涉及三类值的排序,因此这里需要使用Spark的二次排序,在排序操作时使用自定义排序的方式进行处理。

3. 实现热门品类Top10

3.1 创建项目

  本项目在Windows环境下通过IntelliJ IDEA工具构建Maven项目实现,需要提前在Windows环境下安装JDK1.8环境。

创建Maven项目

打开IntelliJ IDEA开发工具进入IntelliJ IDEA欢迎界面。

        在IntelliJ IDEA欢迎界面单击下拉框“Configure”,依次选择“Project Defaults”→“Project Structure”选项,配置项目使用的JDK。

配置Maven项目的组织名(GroupId)和项目工程名(ArtifactId)。 

配置项目名称(Project name)和项目本地的存放目录(Project location)。

 Maven项目创建完成后的目录结构。

导入依赖

        在项目pom.xml文件中添加如下配置内容: 对项目中Netty依赖进行多版本管理,避免本地运行出现多个版本的Netty导致程序出现NoSuchMethodError异常。 引入JSON依赖,用于解析JSON数据。 引入HBase依赖,用于操作HBase数据库。 引入Spark依赖,用于开发Spark数据分析程序。 指定Maven编译的JDK版本。 配置程序打包方式并指定程序主类。

创建项目目录

在项目SparkProject中新建Package包。

        在“New Package”窗口的文本输入框“Enter new package name”中输入“cn.itcast.top10”设置Package名称,用于存放实现热门品类Top10分析的类文件。

在Package包“cn.itcast.top10”新建类。

        在“Create New Class”窗口的文本输入框“Name”中输入“CategoryTop10”设置类名称,在类中实现热门品类Top10分析。

3.2创建Spark连接并读取数据集 

        在类CategoryTop10中定义main()方法,该方法是Java程序执行的入口,在main()方法中实现Spark Core程序。

public class CategoryTop10 {     public static void main(String[] arg){     //实现热门品类Top10分析     } }

        在main()方法中,创建JavaSparkContext和SparkConf对象,JavaSparkContext对象用于实现Spark程序,SparkConf对象用于配置Spark程序相关参数。

SparkConf conf = new SparkConf(); //设置Application名称为top3_area_product conf.setAppName("top10_category"); JavaSparkContext sc = new JavaSparkContext(conf);

         在main()方法中,调用JavaSparkContext对象的textFile()方法读取外部文件,将文件中的数据加载到textFileRDD。

JavaRDD<String> textFileRDD = sc.textFile(arg[0]);

3.3 获取业务数据

        在main()方法中,使用mapToPair()算子转换textFileRDD的每一行数据,用于获取每一行数据中的行为类型和品类ID数据,将转换结果加载到transProductRDD。

JavaPairRDD<Tuple2<String,String>,Integer> transformRDD =     textFileRDD.mapToPair(new PairFunction<String,Tuple2<String, String>, Integer>() {     @Override     public Tuple2<Tuple2<String, String>, Integer> call(String s) throws Exception {         JSONObject json = JSONObject.parseObject(s);         String category_id = json.getString("category_id");         String event_type = json.getString("event_type");         return new Tuple2<>(new Tuple2<>(category_id,event_type), new Integer(1));     } });

3.4 统计品类的行为类型

        在main()方法中,使用reduceByKey()算子对transformRDD进行聚合操作,用于统计每个品类中商品被查看、加入购物车和购买的次数,将统计结果加载到aggregationRDD。

JavaPairRDD<Tuple2<String, String>, Integer> aggregationRDD =         transformRDD.reduceByKey(                 new Function2<Integer, Integer, Integer>() {     @Override     public Integer call(Integer integer1, Integer integer2)             throws Exception {         return integer1 + integer2;     } });

3.5 过滤品类的行为类型

在main()方法中,首先使用filter()算子过滤aggregationRDD每一行数据中行为类型为加入购物车和购买的数据,只保留行为类型为查看的数据,然后使用mapToPair()算子对过滤结果进行转换,获取每一行数据中品类被查看次数和品类ID数据,最终将转换结果加载到getViewCategoryRDD。

JavaPairRDD<String,Integer> getViewCategoryRDD =aggregationRDD .filter(new Function<Tuple2<Tuple2<String, String>, Integer>, Boolean>() {         @Override         public Boolean call(Tuple2<Tuple2<String, String>, Integer> tuple2) throws Exception {             String action = tuple2._1._2;             return action.equals("view");         }     }).mapToPair(new PairFunction<Tuple2<Tuple2<String, String>, Integer>, String, Integer>() {                 @Override                 public Tuple2<String, Integer> call(Tuple2<Tuple2<String, String>, Integer> tuple2)throws Exception {                     return new Tuple2<>(tuple2._1._1,tuple2._2);                 }             });

        在main()方法中,首先使用filter()算子过滤aggregationRDD每一行数据中行为类型为查看和购买的数据,只保留行为类型为加入购物车的数据,然后使用mapToPair()算子对过滤结果进行转换,获取每一行数据中品类被加入购物车次数和品类ID数据,最终将转换结果加载到getCartCategoryRDD。

JavaPairRDD<String,Integer> getCartCategoryRDD = aggregationRDD         .filter(new Function<Tuple2<Tuple2<String, String>, Integer>, Boolean>() {             @Override             public Boolean call(Tuple2<Tuple2<String, String>, Integer> tuple2) throws Exception {                 String action = tuple2._1._2;                 return action.equals("cart");             }         }).mapToPair(new PairFunction<Tuple2<Tuple2<String, String>, Integer>, String, Integer>() {             @Override             public Tuple2<String, Integer> call(Tuple2<Tuple2<String, String>, Integer> tuple2) throws Exception {                 return new Tuple2<>(tuple2._1._1,tuple2._2);             }         });

        在main()方法中,首先使用filter()算子过滤aggregationRDD每一行数据中行为类型为查看和加入购物车的数据,只保留行为类型为购买的数据,然后使用mapToPair()算子对过滤结果进行转换,获取每一行数据中品类被购买次数和品类ID数据,最终将转换结果加载到getPurchaseCategoryRDD。

JavaPairRDD<String,Integer> getPurchaseCategoryRDD = aggregationRDD     .filter(new Function<Tuple2<Tuple2<String, String>, Integer>, Boolean>() {         @Override         public Boolean call(Tuple2<Tuple2<String, String>, Integer> tuple2) throws Exception {             String action = tuple2._1._2;             return action.equals("purchase");         }     }).mapToPair(new PairFunction<Tuple2<Tuple2<String, String>, Integer>, String, Integer>() {         @Override         public Tuple2<String, Integer> call(Tuple2<Tuple2<String, String>, Integer> tuple2) throws Exception {             return new Tuple2<>(tuple2._1._1,tuple2._2);         }     });

3.6  合并相同品类的行为类型

        在main()方法中,使用leftOuterJoin(左外连接)算子合并getViewCategoryRDD、getCartCategoryRDD和getPurchaseCategoryRDD,用于合并同一品类的查看次数、加入购物车次数和购买次数,将合并结果加载到joinCategoryRDD。

JavaPairRDD<String,Tuple2<Integer, Optional<Integer>>> tmpJoinCategoryRDD         =getViewCategoryRDD.leftOuterJoin(getCartCategoryRDD); JavaPairRDD<String,Tuple2<Tuple2<Integer, Optional<Integer>>,Optional<Integer>>> joinCategoryRDD         = tmpJoinCategoryRDD.leftOuterJoin(getPurchaseCategoryRDD);

Optional类是一个包含有可选值的包装类,它既可以含有对象也可以为空,主要为了解决空指针异常的问题,因为某些品类中的商品可能被查看但并未被购买或加入购物车。

3.7  根据品类的行为类型进行排序

        在包“cn.itcast.top10”中创建文件CategorySortKey.java,用于实现自定义排序。在类CategorySortKey中继承比较器接口Comparable和序列化接口Serializable,并实现Comparable接口的compareTo()方法。

import java.io.Serializable; public class CategorySortKey implements Comparable<CategorySortKey>,Serializable{      ......     @Override     public int compareTo(CategorySortKey other) {         if(viewCount - other.getViewCount() != 0) {             return (int) (viewCount - other.getViewCount());         } else if(cartCount - other.getCartCount() != 0) {             return (int) (cartCount - other.getCartCount());         } else if(purchaseCount - other.getPurchaseCount() != 0) {             return (int) (purchaseCount - other.getPurchaseCount());         }         return 0;     } }

        在main()方法中,使用mapTopair()算子转换joinCategoryRDD,将joinCategoryRDD中品类被查看次数、加入购物车次数和购买次数映射到自定义排序类CategorySortKey,通过transCategoryRDD加载转换结果。

JavaPairRDD<CategorySortKey,String> transCategoryRDD = joinCategoryRDD .mapToPair(new PairFunction<Tuple2<String, Tuple2<Tuple2<Integer, Optional<Integer>>,Optional<Integer>>>,CategorySortKey,String>() {      @Override      public Tuple2<CategorySortKey,String> call(Tuple2<String, Tuple2<Tuple2<Integer, Optional<Integer>>, Optional<Integer>>> tuple2) throws Exception {                    String category_id = tuple2._1;                    int viewcount = tuple2._2._1._1;                    int cartcount = 0;                    int purchasecount = 0;                    if (tuple2._2._1._2.isPresent()){  cartcount = tuple2._2._1._2.get().intValue();}                    if (tuple2._2._2.isPresent()){ purchasecount = tuple2._2._2.get().intValue(); }                    CategorySortKey sortKey = new CategorySortKey(viewcount, cartcount, purchasecount);                    return new Tuple2<>(sortKey,category_id);                }            });

        在main()方法中,通过sortByKey()算子对transCategoryRDD进行排序操作,使transCategoryRDD中品类被查看次数、加入购物车次数和购买次数根据自定义排序类CategorySortKey指定的排序规则进行排序,将排序结果加载到sortedCategoryRDD。

JavaPairRDD<CategorySortKey,String> sortedCategoryRDD = transCategoryRDD.sortByKey(false);

        在main()方法中,使用take()算子获取sortedCategoryRDD前10个元素,即热门品类Top10分析结果,将分析结果加载到top10CategoryList。

List<Tuple2<CategorySortKey, String>> top10CategoryList = sortedCategoryRDD.take(10);

3.3.8  数据持久化

封装工具类:

(1)在项目SparkProject的 java目录新建Package包“cn.itcast.hbase”,用于存放实现数据持久化的Java文件。在包“cn.itcast.hbase”下创建文件HbaseConnect.java,用于实现封装HBase数据库连接工具类,在类中实现连接HBase数据库的操作。

(2)在项目SparkProject的包“cn.itcast.hbase”中创建文件HbaseUtils.java,用于实现封装HBase数据库操作工具类,在类中实现创建HBase数据表和向HBase数据表中插入数据的操作。

持久化热门品类Top10分析结果

        在类CategoryTop10中添加方法top10ToHbase(),用于将热门品类Top10分析结果持久化到HBase数据库中,该方法包含参数top10CategoryList,表示热门品类Top10分析结果数据。

public static void top10ToHbase(List<Tuple2<CategorySortKey, String>> top10CategoryList) throws Exception{     HbaseUtils.createTable("top10","top10_category");     String[] column = {"category_id","viewcount","cartcount","purchasecount"};     String viewcount = "" , cartcount = "", purchasecount = "", category_id = "";       int count = 0;     for (Tuple2<CategorySortKey, String> top10: top10CategoryList) {         count++;         viewcount = String.valueOf(top10._1.getViewCount());         cartcount = String.valueOf(top10._1.getCartCount());         purchasecount = String.valueOf(top10._1.getPurchaseCount());         category_id = top10._2;         String[] value = {category_id,viewcount,cartcount,purchasecount};         HbaseUtils.putsToHBase("top10","rowkey_top"+count,"top10_category",column,value);     } }

        在类CategoryTop10的main()方法中,调用方法top10ToHbase()并传入参数top10CategoryList,用于在Spark程序中实现top10ToHbase()方法,将热门品类Top10分析结果持久化到HBase数据库中的数据表top10。

try {     top10ToHbase(top10CategoryList); } catch (Exception e) {     e.printStackTrace(); } HbaseConnect.closeConnection(); sc.close();

4. 运行程序

        在IntelliJ IDEA中将热门品类Top10分析程序封装成jar包,并上传到集群环境中,通过spark-submit将程序提交到YARN中运行。

封装jar包:

在IntelliJ IDEA主界面单击右侧“Maven”选项卡打开Maven窗口。

        在Maven窗口单击展开Lifecycle折叠框,双击Lifecycle折叠框中的“package”选项,IntelliJ IDEA会自动将程序封装成jar包,封装完成后,若出现“BUILD SUCCESS”内容,则证明成功封装热门品类Top10分析程序为jar包。

        在项目SparkProject中的target目录下会生成SparkProject-1.0-SNAPSHOT.jar文件,为了便于后续与其它程序区分,这里将默认文件名称修改为CategoryTop10.jar。

将jar包上传到集群:

        使用远程连接工具SecureCRT连接虚拟机Spark01,在存放jar文件的目录/export/SparkJar/(该目录需提前创建)下执行“rz”命令,上传热门品类Top10分析程序的jar包CategoryTop10.jar。

将数据集上传到本地文件系统:

        使用远程连接工具SecureCRT连接虚拟机Spark01,在存放数据文件的目录/export/data/SparkData/(该目录需提前创建)下执行“rz”命令,将数据集user_session.txt上传至本地文件系统。

在HDFS创建存放数据集的目录:

        将数据集上传到HDFS前,需要在HDFS的根目录创建目录spark_data,用于存放数据集user_session.txt。

 hdfs dfs -mkdir /spark_data

上传数据集到HDFS:

        将本地文件系统目录/export/data/SparkData/下的数据集user_session.txt上传到HDFS的spark_data目录下。

 hdfs dfs -put /export/data/SparkData/user_session.txt /spark_data

 提交热门品类Top10分析程序到YARN集群:

        通过Spark安装目录中bin目录下的shell脚本文件spark-submit提交热门品类Top10分析程序 到Hadoop集群的YARN运行。

spark-submit \

--master yarn \

--deploy-mode cluster \

--num-executors 3 \

--executor-memory 2G \

--class cn.itcast.top10.CategoryTop10 \

/export/SparkJar/CategoryTop10.jar /spark_data/user_session.txt

查看程序运行状态:

        程序运行时在控制台会生成“Application ID”(程序运行时的唯一ID),在浏览器输入“192.168.121.132:8088”,进入YARN的Web UI界面,通过对应“Application ID”查看程序的运行状态,当程序运行完成后State为FINISHED,并且FinalStatus为SUCCEES。

查看程序运行结果:

在虚拟机Spark01执行“hbase shell”命令,进入HBase命令行工具。

在HBase命令行工具中执行“list”命令,查看HBase数据库中的所有数据表。

> list TAB

test  

top10      

2 row(s) in 0.1810 seconds

在HBase命令行工具执行“scan 'top10'”命令,查询数据表top10中的数据。

        本文主要讲解了如何通过用户行为数据实现热门品类Top10分析,首先我们对数据集进行分析,使读者了解用户行为数据的数据结构。接着通过实现思路分析,使读者了解热门品类Top10分析的实现流程。然后通过IntelliJ IDEA开发工具实现热门品类Top10分析程序并将分析结果存储到HBase数据库,使读者掌握运用Java语言编写Spark Core和HBase程序的能力。最后封装热门品类Top10分析程序并提交到集群运行,使读者掌握运用IntelliJ IDEA开发工具封装Spark Core程序以及Spark ON YARN模式运行Spark Core程序的方法。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/21933.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

English Learning - L3 作业打卡 Lesson2 Day14 2023.5.18 周四

English Learning - L3 作业打卡 Lesson2 Day14 2023.5.18 周四 引言&#x1f349;句1: A brown out is an expression for a reduction in electric power.成分划分弱读连读爆破语调 &#x1f349;句2: Brown outs happen when there is too much demand for electricity.成分…

微服务之以nacos注册中心,以gateway路由转发服务调用实例(第一篇)

实现以nacos为注册中心,网关路由转发调用 项目版本汇总项目初始化新建仓库拉取仓库项目父工程pom初始化依赖版本选择pom文件如下 网关服务构建pom文件启动类配置文件YMLnacos启动新建命名空间配置网关yml(nacos)网关服务启动 用户服务构建pom文件启动类配置文件YML新增url接口配…

行业分析——半导体行业

半导体行业是现代高科技产业和新兴战略产业&#xff0c;是现代信息技术、电子技术、通信技术、信息化等产业的基础之一。我国政府先后制定了《中国集成电路产业发展规划》和《中国人工智能发展规划》&#xff0c;明确提出要支持半导体和人工智能等产业的发展&#xff0c;为半导…

DRMS-关于开展防范风险整改工作的工作计划

防范风险整改工作 工作计划 &#xff12;&#xff10;&#xff12;&#xff13;年&#xff15;月&#xff11;&#xff10;日 尊敬的【DRMS】集群用户&#xff1a; 根据河南省郑州市国家高新技术产业开发区市场监督管理局《关于河南数权数字信息科技研究院网络违规整改通知》及…

微信小程序nodejs+vue高校食堂餐厅点餐订餐系统ja221

本文以实际运用为开发背景&#xff0c;运用软件工程原理和开发方法&#xff0c;它主要是采用 语言 node.js 框架&#xff1a;Express 前端:Vue.js 数据库&#xff1a;mysql 数据库工具&#xff1a;Navicat 开发软件&#xff1a;VScode 前端vueelementui, (1) vue引入elementu…

【IDEA使用码云教程】

IDEA使用码云教程 一、下载、安装git二、配置Gitee插件三、克隆项目四、上传项目五、推送项目六、更新项目 一、下载、安装git 1.打开git官网&#xff0c;选择你的操作系统 官网下载地址&#xff1a;https://git-scm.com/downloads 2.根据你的系统位数选择相应的版本下载 系统…

Spring Cloud Alibaba 集成 sentinel ,sentinel控制台不能检测到服务,但是在命令行配置启动参数就能看到服务

问题背景 Spring Cloud Alibaba 集成 sentinel &#xff0c;sentinel代码写的限流降级的功能都是好的&#xff0c;但是sentinel控制台不能检测到服务&#xff0c;在程序启动时配置JVM启动参数&#xff08;-Dcsp.sentinel.dashboard.serverlocalhost:18080 -Dproject.namename-…

成绩管理系统

系列文章 任务28 成绩管理系统 文章目录 系列文章一、实践目的与要求1、目的2、要求 二、课题任务三、总体设计1.存储结构及数据类型定义2.程序结构3.所实现的功能函数4、程序流程图 四、小组成员及分工五、 测试读入数据浏览全部信息增加学生信息保存数据删除学生信息修改学生…

【活动预告】数据集成引擎BitSail遇上CDC

BitSail是字节跳动开源数据集成引擎&#xff0c;于2022年10月26日宣布开源&#xff0c;可支持多种异构数据源间的数据同步&#xff0c;并提供离线、实时、全量、增量场景下全域数据集成解决方案。BitSail支撑了字节内部众多的业务线&#xff0c;支持多种数据源之间的批式/流式/…

头歌计算机组成原理实验—运算器设计(6)第6关:5位无符号阵列乘法器设计

第6关&#xff1a;5位无符号阵列乘法器设计 实验目的 帮助学生掌握阵列乘法器的实现原理&#xff0c;能够分析阵列乘法器的性能&#xff0c;能在 Logisim 中绘制阵列乘法器电路。 视频讲解 实验内容 在 Logisim 中打开 alu.circ 文件&#xff0c;在5位阵列乘法器中实现斜向…

Rocketmq常用使用场景

RocketMQ 是阿里开源的分布式消息中间件&#xff0c;跟其它中间件相比&#xff0c;RocketMQ 的特点是纯JAVA实现 基础概念 Producer&#xff1a; 消息生产者&#xff0c;负责产生消息&#xff0c;一般由业务系统负责产生消息 Producer Group&#xff1a; 消息生产者组&#xf…

聚会游戏玩什么?UMO轻松炒热气氛

UMO是一款有趣的多人益智桌游&#xff0c;考验玩家耐力和技巧的比拼&#xff01;玩家将在游戏中通过特定的规则来出牌&#xff0c;谁先出完所有牌谁就赢&#xff0c;游戏非常讲究策略和运气哦~ 当玩家手上只剩一张牌时&#xff0c;必须喊出UMO&#xff01;游戏因此得名。【数字…

3 个令人惊艳的 ChatGPT 项目,开源了!

过去一周&#xff0c;AI 界又发生了天翻地覆的变化&#xff0c;其中&#xff0c;最广为人知的&#xff0c;应该是 OpenAI 正式上线 ChatGPT iOS 客户端&#xff0c;让所有人都可以更方便的在手机上与 ChatGPT 聊天。 此外&#xff0c;Stable Diffusion 母公司 Stability AI 也…

论文阅读_音频压缩_SoundStream

论文信息 number headings: auto, first-level 2, max 4, _.1.1 name_en: SoundStream: An End-to-End Neural Audio Codec name_ch: SoundStream&#xff1a;一种端到端的神经音频编解码器 paper_addr: http://arxiv.org/abs/2107.03312 doi: 10.1109/TASLP.2021.3129994 dat…

Apache Kafka - 安装注意事项

文章目录 概述安装Kafka配置Kafka启动Kafka配置注意事项导图 概述 在现代的大数据时代&#xff0c;消息队列成为了极为重要的组件。Kafka作为一种高吞吐量、低延迟、可扩展的分布式发布订阅消息系统&#xff0c;在大数据领域得到了广泛的应用。来&#xff0c;这里我们将介绍如…

Python系列之字符串和列表

感谢点赞和关注 &#xff0c;每天进步一点点&#xff01;加油&#xff01; 目录 一、字符串 1.1 字符串的定义与输入 1.2 字符串的拼接与格式化输出 1.3 字符串的下标 1.4 字符串的切片和倒序 1.5 字符串的常见操作 二、列表-List 2.1 列表的常见操作 2.2 列表合并和拼…

RocketMQ(超级无敌认真好用,万字收藏篇!!!!)

文章目录 RocketMQ1 RocketMQ简介2 Rocket安装2.1 Rocket安装(基于Linux)2.2 控制台安装 3 Rocket的使用3.1 普通消息发送3.1.1 同步消息发送3.1.2 异步消息发送3.1.3 单向消息发送 3.2 普通消息消费3.2.1 集群消费3.2.2 广播消费 3.3 收发顺序消息3.3.1 全局顺序生产消费3.2.2…

越来越多企业出现网络安全问题,是什么原因导致的?

近年来网络安全问题层出不穷&#xff0c;信息泄露、网络钓鱼、黑客攻击等问题频繁发生。 尽管有证据表明在一些全球知名的企业组织中存在价值数十亿美元的网络安全漏洞&#xff0c;但企业仍然没有认真对待网络安全。大公司在寻找各种理由来减少其网络安全预算&#xff0c;从而…

无魔法插件 - ChatGPT Sidebar with GPT-4

文章目录 1.介绍2.功能一览2.1 唤醒方式2.2 聊天功能2.3 快捷模板2.4 单独聊天界面2.5 ChatPDF2.6 任意位置快捷使用模板2.7 手机 APP 3.GPT-3.0 还是 GPT-3.5&#xff1f;4.免费 or 收费&#xff1f;5.安装 Sidebar 创作不易&#xff0c;如果本文对你有帮助&#xff0c;胖友记…

国考省考行测:资料分析:增量减量计算公式,百分数化分数

国考省考行测&#xff1a;增量减量计算公式 2022找工作是学历、能力和运气的超强结合体! 公务员特招重点就是专业技能&#xff0c;附带行测和申论&#xff0c;而常规国考省考最重要的还是申论和行测&#xff0c;所以大家认真准备吧&#xff0c;我讲一起屡屡申论和行测的重要知…