YOLOv8改进 | 2023 | Deformable-LKA可变形大核注意力(涨点幅度超高)

一、本文介绍

本文给大家带来的改进内容是Deformable-LKA(可变形大核注意力)。Deformable-LKA结合了大卷积核的广阔感受野和可变形卷积的灵活性,有效地处理复杂的视觉信息。这一机制通过动态调整卷积核的形状和大小来适应不同的图像特征,提高了模型对目标形状和尺寸的适应性。在YOLOv8中,Deformable-LKA可以被用于提升对小目标和不规则形状目标的检测能力特别是在复杂背景或不同光照条件下。我进行了简单的实验,这一改进显著提高了模型mAP(提高了大概0.8左右)。Deformable-LKA,引入可以将其用在C2f和检测头中进行改进估计效果会更高,所以非常推荐大家使用。

推荐指数:⭐⭐⭐⭐⭐

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备    

训练结果对比图->  

这次试验我用的数据集大概有七八百张照片训练了100个epochs,可以出模型没有完全拟合大概涨点了0.8左右(而且模型有一定的波动是因为我的数据集质量导致的如果数据集质量高一点效果会更好),如果完全拟合效果肯定会更好。

目录

一、本文介绍

二、Deformable-LKA机制原理

2.1 Deformable-LKA的基本原理

2.2 大卷积核

2.3 可变形卷积

2.4 2D和3D适应性

三、D-LKA代码和C2f-D-LKA

3.1 D-LKA代码

3.2 修改了C2f-D-LKA(注意这里输入参数不一样和标准的C2f) 

四、手把手教你添加D-LKA

4.1 D-LKA的添加教程

4.2 D-LKA的yaml文件和训练截图(仔细看这个否则会报错)

4.2.1 D-LKA的yaml文件一(推荐)

4.2.2 D-LKA的yaml文件二

4.2.2 D-LKA的训练过程截图 

五、D-LKA可添加的位置

5.1 推荐D-LKA可添加的位置 

5.2 图示D-LKA可添加的位置 

六、本文总结


二、Deformable-LKA机制原理

论文地址:官方论文地址

代码地址:官方代码地址


2.1 Deformable-LKA的基本原理

Deformable Large Kernel Attention (D-LKA) 的基本原理是结合了大卷积核和可变形卷积的注意力机制,通过采用大卷积核来模拟类似自我关注的感受野,同时避免了传统自我关注机制的高计算成本。此外,D-LKA通过可变形卷积来灵活调整采样网格,使得模型能够更好地适应不同的数据模式。可以将其分为以下几点:

1. 大卷积核: D-LKA 使用大卷积核来捕捉图像的广泛上下文信息,模仿自我关注机制的感受野。

2. 可变形卷积: 结合可变形卷积技术,允许模型的采样网格根据图像特征灵活变形,适应不同的数据模式。

3. 2D和3D适应性: D-LKA的2D和3D版本,使其在处理不同深度的数据时表现出色。

下面我来分别讲解这三种主要的改进机制->


2.2 大卷积核

大卷积核(Large Kernel)是一种用于捕捉图像中的广泛上下文信息的机制。它模仿自注意力(self-attention)机制的感受野,但是使用更少的参数和计算量。通过使用深度可分离的卷积(depth-wise convolution)深度可分离的带扩张的卷积(depth-wise dilated convolution),可以有效地构造大卷积核。这种方法允许网络在较大的感受野内学习特征,同时通过减少参数数量来降低计算复杂度。在Deformable LKA中,大卷积核与可变形卷积结合使用,进一步增加了模型对复杂图像模式的适应性。

上图为变形大核注意力(Deformable Large Kernel Attention, D-LKA)模块的架构。从图中可以看出,该模块由多个卷积层组成,包括:

1. 标准的2D卷积(Conv2D)。
2. 带有偏移量的变形卷积(Deformable Convolution, Deform-DW Conv2D),允许网络根据输入特征自适应地调整其感受野。
3. 偏移场(Offsets Field)的计算,它是由一个标准卷积层生成,用于指导变形卷积层如何调整其采样位置。
4. 激活函数GELU,增加非线性。


2.3 可变形卷积

可变形卷积(Deformable Convolution)被用来增强模型对医学图像中的不规则形状和大小的捕捉能力。可变形卷积通过添加额外的偏移量来调整标准卷积的采样位置,从而允许卷积核动态地适应图像的内容。这样的机制使得卷积层能够更加灵活地捕捉到各种形态的结构,特别是在医学图像中常见的不规则和可变形的器官。通过学习图像特征本身来确定这些偏移量,可变形卷积能够提供一种自适应的内核形状,这有助于提升分割的精确性和边缘定义。


2.4 2D和3D适应性

2D和3D适应性指的是Deformable Large Kernel Attention(D-LKA)技术应用于不同维度数据的能力2D D-LKA专为处理二维图像数据设计,适用于常见的医学成像方法,如X射线或MRI中的单层切片。而3D D-LKA则扩展了这种技术,使其能够处理三维数据集,充分利用体积图像数据中的空间上下文信息。3D版本特别擅长于交叉深度数据理解,即能够在多个层面上分析和识别图像特征,这对于体积重建和更复杂的医学成像任务非常有用。

上图展示了3D和2D Deformable Large Kernel Attention(D-LKA)模型的网络架构。左侧是3D D-LKA模型,右侧是2D D-LKA模型。

1. 3D D-LKA模型(左侧):包含多个3D D-LKA块,这些块在下采样和上采样之间交替,用于深度特征学习和分辨率恢复。

2. 2D D-LKA模型(右侧):利用MaxViT块作为编码器组件,并在不同的分辨率级别上使用2D D-LKA块,通过扩展(Patch Expanding)和D-LKA注意力机制进行特征学习。


三、D-LKA代码和C2f-D-LKA

3.1 D-LKA代码

使用方法看章节四 

import torchvision
import torch.nn as nn


class DeformConv(nn.Module):

    def __init__(self, in_channels, groups, kernel_size=(3, 3), padding=1, stride=1, dilation=1, bias=True):
        super(DeformConv, self).__init__()

        self.offset_net = nn.Conv2d(in_channels=in_channels,
                                    out_channels=2 * kernel_size[0] * kernel_size[1],
                                    kernel_size=kernel_size,
                                    padding=padding,
                                    stride=stride,
                                    dilation=dilation,
                                    bias=True)

        self.deform_conv = torchvision.ops.DeformConv2d(in_channels=in_channels,
                                                        out_channels=in_channels,
                                                        kernel_size=kernel_size,
                                                        padding=padding,
                                                        groups=groups,
                                                        stride=stride,
                                                        dilation=dilation,
                                                        bias=False)

    def forward(self, x):
        offsets = self.offset_net(x)
        out = self.deform_conv(x, offsets)
        return out


class deformable_LKA(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.conv0 = DeformConv(dim, kernel_size=(5, 5), padding=2, groups=dim)
        self.conv_spatial = DeformConv(dim, kernel_size=(7, 7), stride=1, padding=9, groups=dim, dilation=3)
        self.conv1 = nn.Conv2d(dim, dim, 1)

    def forward(self, x):
        u = x.clone()
        attn = self.conv0(x)
        attn = self.conv_spatial(attn)
        attn = self.conv1(attn)
        return u * attn

3.2 修改了C2f-D-LKA(注意这里输入参数不一样和标准的C2f) 

 这里用D-LKA替换了Bottleneck中的卷积模块,参数发生了改变。

class Bottleneck_DLKA(nn.Module):
    """Standard bottleneck."""

    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
        """Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
        expansion.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, k[0], 1)
        self.cv2 = deformable_LKA(c_)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        """'forward()' applies the YOLO FPN to input data."""
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))


class C2f_DLKA(nn.Module):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
        expansion.
        """
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck_DLKA(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))

    def forward(self, x):
        """Forward pass through C2f layer."""
        x = self.cv1(x)
        x = x.chunk(2, 1)
        y = list(x)
        # y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

    def forward_split(self, x):
        """Forward pass using split() instead of chunk()."""
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))



四、手把手教你添加D-LKA

4.1 D-LKA的添加教程

添加教程这里不再重复介绍、因为专栏内容有许多,添加过程又需要截特别图片会导致文章大家读者也不通顺如果你已经会添加注意力机制了,可以跳过本章节,如果你还不会,大家可以看我下面的文章,里面详细的介绍了拿到一个任意机制(C2f、Conv、Bottleneck、Loss、DetectHead)如何添加到你的网络结构中去。

这里需要注意的是我上面提供了两段代码一个是C2f-D-LKA一个是D-LKA的本体代码,这两种方法的添加方式有些不同。

C2f-D-LKA添加的方式按照下面教程的C2f添加即可。

如果想要在主干上使用D-LKA本体需要按照有参数的注意力机制添加大家需要注意!

添加教程->YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头


4.2 D-LKA的yaml文件和训练截图(仔细看这个否则会报错)

4.2.1 D-LKA的yaml文件一(推荐)

下面的配置文件为我修改的C2f-D-LKA的位置(上面的实验结果是用这个方法跑出来的)

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9


# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f_DLKA, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f_DLKA, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f_DLKA, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

4.2.2 D-LKA的yaml文件二

这个文件是另一种添加的方式,和上面的思想也不一样,那个效果更好针对不同的数据集可能也不一样所以大家需要进行尝试。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
  - [-1, 3, deformable_LKA, []]  # 16 (P5/32-large)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 19 (P4/16-medium)
  - [-1, 3, deformable_LKA, []]  # 20 (P5/32-large)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 23 (P5/32-large)
  - [-1, 3, deformable_LKA, []]  # 24 (P5/32-large)

  - [[16, 20, 24], 1, Detect, [nc]]  # Detect(P3, P4, P5)


4.2.2 D-LKA的训练过程截图 

下面是添加了D-LKA的训练截图。

(最近有人说我改的代码是没有发全的,我不知道这群人是怎么说出这种话的,希望大家如果用我的代码成功的可以在评论区支持一下,我也好发更多的改进毕竟免费给大家看。同时有问题皆可在评论区留言我看到都会回复) 

大家可以看下面的运行结果和添加的未知所以不存在我发的代码不全或者运行不了的问题大家有问题也可以在评论区评论我看到都会为大家解答(我知道的)。

​​​​


五、D-LKA可添加的位置

5.1 推荐D-LKA可添加的位置 

D-LKA是一种即插即用的模块,其可以添加的位置有很多,添加的位置不同效果也不同,所以我下面推荐几个添加的位,置大家可以进行参考,当然不一定要按照我推荐的地方添加。

  1. 残差连接中:在残差网络的残差连接中加入D-LKA(yaml文件二)。

  2. Neck部分:YOLOv8的Neck部分负责特征融合,这里添加修改后的C2f_D-LKA可以帮助模型更有效地融合不同层次的特征(yaml文件一)

  3. 检测头中的卷积:在最终的输出层前加入SPD-Conv可以使模型在做出最终预测之前,更加集中注意力于最关键的特征(我没有进行尝试大家有兴趣的可以试试)。

文字大家可能看我描述不太懂,大家可以看下面的网络结构图中我进行了标注。


5.2 图示D-LKA可添加的位置 

2949694815404620bdfb5875286c8e73.png​​​​


六、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

3d51a0611af1442f833362eaf18fbae2.gif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/218925.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

硬盘分区丢失?这样轻松恢复!

​“在我安装操作系统的过程中,我先把C盘(100G)进行了格式化,而我的D盘大小为297G,然而在Win PE中,所显示的仅是247G(CD盘总容量),这247G是空无一物的。让我感到困惑的是…

vmware虚拟机磁盘扩容与挂载

解决工作中遇到vmware虚拟机磁盘容量不足的问题 一、添加新磁盘并将磁盘挂载到空目录 1、关机加硬盘 1)首先,需要将虚拟机关机,然后在虚拟机设置页面进行硬盘添加 2) 默认选择SCSI,点击下一步 3) 保持默认,点击下一步…

智能优化算法应用:基于世界杯算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于世界杯算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于世界杯算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.世界杯算法4.实验参数设定5.算法结果6.参考文献7.…

直面多云困境,聊聊F5分布式云的破局之道

在数字化浪潮的大背景下,我们迎来了一个万物上云的时代。Gartner的调查数据显示,81%的公有云用户选择两个或两个以上的云服务供应商。对企业来说,充分利用多云网络可以实现业务的成功转型和增长。然而机遇与挑战并存,本文从多云网…

高效合并技巧:视频合并,保证质量,提升剪辑效率

在视频制作过程中,视频剪辑和合并是常见的操作步骤。不过这些步骤往往需要耗费大量的时间和精力。那要如何提高效率呢?下面讲解一些高效合并技巧,引用云炫AI智剪快速整合视频,随机合并视频,保证质量,并提升…

WVP-RPO开源项目搭建实践

0.拉取代码 GitHub - 648540858/wvp-GB28181-pro: WEB VIDEO PLATFORM是一个基于GB28181-2016标准实现的网络视频平台,支持NAT穿透,支持海康、大华、宇视等品牌的IPC、NVR、DVR接入。支持国标级联,支持rtsp/rtmp等视频流转发到国标平台&…

自定义软件app定制开发的需求和趋势|企业网站小程序搭建

自定义软件app定制开发的需求和趋势|企业网站小程序搭建 随着智能手机的普及和移动互联网的快速发展,移动应用程序(App)成为人们日常生活和工作中必不可少的一部分。然而,市面上已有的应用程序并不能完全满足用户的个性化需求&…

我有才知识付费小程序免费搭建:轻松拥有知识付费平台

用户管理 提供会员特权和积分奖励,提高用户忠诚度和购买力。 用户通过在平台上进行消费、签到、参与活动等方式获取积分,用于兑换丰厚奖品或提升会员等级。增强用户的参与感与忠诚度,提高用户粘性,并刺激用户的购买力。 为用户打…

Git 分支合并时 Merge, Rebase, Squash 的使用场景

前言 Git 的分支设计大大提升了并行开发的能力,但相应的,也就要解决如何进行分支合并。毕竟分久必合,最终还是要把大家的工作合并起来,进行统一发布的。在合并时,通常有三种操作: Merge commitsRebaseSqu…

IDEA启动失败报错解决思路

IDEA启动失败报错解决思路 背景:在IDEA里安装插件失败,重启后直接进不去了,然后分析问题解决问题的过程记录下来。方便下次遇到快速解决。也是一种解决问题的思路,分享出去。 启动报错信息 Internal error. Please refer to https…

Day28 回溯04

Day28 回溯04 这题注意,需要数层去重

界面控件DevExpress WinForms Sunburst组件,轻松可视化分层扁平数据!

DevExpress WinForms Sunburst控件允许用户以紧凑和视觉上吸引人的方式可视化分层和扁平数据。 DevExpress WinForms有180组件和UI库,能为Windows Forms平台创建具有影响力的业务解决方案。同时能完美构建流畅、美观且易于使用的应用程序,无论是Office风…

在Windows操作系统上使用rtsp simple server和ffmpeg推送录屏视频流

大纲 1 搭建启动rtsp server2 推送录屏视频流下载FFmpeg 3 检验3.1 获取本机IP3.2 检测 1 搭建启动rtsp server 从https://github.com/aler9/rtsp-simple-server/releases下载Windows版本的编译结果。 解压,然后启动该程序 2 推送录屏视频流 下载FFmpeg 从htt…

JS生成登录验证码

采用js生成登录的验证码 采用的技术点有html&#xff0c;css&#xff0c;JS&#xff0c;jQuery HTML&#xff1a; <div class"box_b"><img src"./img/0775639c-c82c-4a29-937f-d2a3bae5151a.png" alt""><div class"regist…

MIT线性代数笔记-第23讲-微分方程,exp(At)

目录 23.微分方程&#xff0c; e x p ( A t ) exp(At) exp(At)用矩阵求解微分方程矩阵指数二阶常微分方程 打赏 23.微分方程&#xff0c; e x p ( A t ) exp(At) exp(At) 用矩阵求解微分方程 例&#xff1a; { d u 1 d t − u 1 2 u 2 d u 2 d t u 1 − 2 u 2 \left \{ \b…

什么是呼叫中心的语音通道?呼叫中心语音线路有几种?

什么是呼叫中心的语音通道&#xff1f; 呼叫中心的语音通道是指在呼叫中心中使用的语音信号传输通道&#xff0c;它是呼叫中心中至关重要的一部分&#xff0c;负责将客户的语音信息传递给客服代表&#xff0c;以及将客服代表的语音信息传递给客户。在呼叫中心的运营中&#xf…

【UE】UEC++委托代理

目录 【UE】UEC委托代理 一、委托的声明与定义 二、单播绑定与解绑 三、多播绑定与解绑 四、动态单播绑定与解绑 五、动态多播绑定与解绑 六、委托的调用 七、运行结果 1、运行开始 2、调用单播 3、调用多播 4、调用动态单播 5、调用动态多播 6、运行结束 【UE】…

傻傻分不清楚的分区、分库、分表

一、分区 MySQL 在 5.1 时添加了对 分区&#xff08;即水平分区&#xff09; 的支持。MySQL 的物理数据存储在表空间文件&#xff08;.ibdata1和.ibd&#xff09;中&#xff0c;分区 的意思是指将同一表中不同行的记录分配到不同的物理文件中。有几个分区就有几个 .idb 文件。…

到手价价格监测如何实现

渠道中的低价数据是品牌非常头疼的问题&#xff0c;治理低价、乱价也是在治理窜货&#xff0c;品牌需要长期执行&#xff0c;并且要有监测渠道价格的能力&#xff0c;监测价格不能只对页面价进行输出&#xff0c;要监测链接中的到手价&#xff0c;这就包含对所有促销信息内容的…

Netty01-NIO与BIO

NIO 什么是NIO Java NIO 全称 java non-blocking IO&#xff0c;是指JDK 1.4 及以上版本提供的新API&#xff08;New IO&#xff09;。从 JDK1.4 开始&#xff0c;Java 提供了一系列改进的输入/输出的新特性&#xff0c;为所有的原始类型&#xff08;boolean类型除外&#xf…