BiseNet实现遥感影像地物分类

遥感地物分类通过对遥感图像中的地物进行准确识别和分类,为资源管理、环境保护、城市规划、灾害监测等领域提供重要信息,有助于实现精细化管理和科学决策,提升社会治理和经济发展水平。深度学习遥感地物分类在提高分类精度、自动化程度、处理大规模数据、普适性以及推动遥感技术创新和发展等方面都具有重要的意义。本文将利用深度学习BiseNet实现遥感地物分类。

数据集

本文使用的数据集为WHDLD数据集[1](Wuhan dense labeling dataset)。WHDLD数据集包括4940张高分辨率遥感影像,包含6种土地覆盖类型,影像尺寸均被裁剪至256×256像素。下面是一些数据集示例。 alt

BiSeNet

BiseNet[2](Bilateral Segmentation Network)是一种用于图像分割的深度学习网络。它具有双边分割的特点,可以同时处理空间信息和上下文信息,从而实现高效、准确的图像分割。

具体来说,BiseNet由两个分支组成:空间路径(spatial path)和上下文路径(context path)。其中,空间路径具有较小的感受野,可以捕获丰富的空间信息并生成高分辨率的特征图;而上下文路径则具有较大的感受野,可以捕获更多的上下文信息并生成低分辨率的特征图。这两个路径通过一个特征融合模块进行融合,从而生成既包含丰富空间信息又包含上下文信息的分割结果。

在BiseNet中,还有一些关键的技术和设计,如轻量级模型设计、注意力机制、特征融合等,这些技术和设计可以进一步提升网络的性能和效率。 alt

网络复现

resnet18

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as modelzoo

resnet18_url = 'https://download.pytorch.org/models/resnet18-5c106cde.pth'


from torch.nn import BatchNorm2d


def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)


class BasicBlock(nn.Module):
    def __init__(self, in_chan, out_chan, stride=1):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(in_chan, out_chan, stride)
        self.bn1 = BatchNorm2d(out_chan)
        self.conv2 = conv3x3(out_chan, out_chan)
        self.bn2 = BatchNorm2d(out_chan)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = None
        if in_chan != out_chan or stride != 1:
            self.downsample = nn.Sequential(
                nn.Conv2d(in_chan, out_chan,
                          kernel_size=1, stride=stride, bias=False),
                BatchNorm2d(out_chan),
                )

    def forward(self, x):
        residual = self.conv1(x)
        residual = self.bn1(residual)
        residual = self.relu(residual)
        residual = self.conv2(residual)
        residual = self.bn2(residual)

        shortcut = x
        if self.downsample is not None:
            shortcut = self.downsample(x)

        out = shortcut + residual
        out = self.relu(out)
        return out


def create_layer_basic(in_chan, out_chan, bnum, stride=1):
    layers = [BasicBlock(in_chan, out_chan, stride=stride)]
    for i in range(bnum-1):
        layers.append(BasicBlock(out_chan, out_chan, stride=1))
    return nn.Sequential(*layers)


class Resnet18(nn.Module):
    def __init__(self):
        super(Resnet18, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = create_layer_basic(64, 64, bnum=2, stride=1)
        self.layer2 = create_layer_basic(64, 128, bnum=2, stride=2)
        self.layer3 = create_layer_basic(128, 256, bnum=2, stride=2)
        self.layer4 = create_layer_basic(256, 512, bnum=2, stride=2)
        self.init_weight()

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        feat8 = self.layer2(x) # 1/8
        feat16 = self.layer3(feat8) # 1/16
        feat32 = self.layer4(feat16) # 1/32
        return feat8, feat16, feat32

    def init_weight(self):
        state_dict = modelzoo.load_url(resnet18_url)
        self_state_dict = self.state_dict()
        for k, v in state_dict.items():
            if 'fc' in k: continue
            self_state_dict.update({k: v})
        self.load_state_dict(self_state_dict)

    def get_params(self):
        wd_params, nowd_params = [], []
        for name, module in self.named_modules():
            if isinstance(module, (nn.Linear, nn.Conv2d)):
                wd_params.append(module.weight)
                if not module.bias is None:
                    nowd_params.append(module.bias)
            elif isinstance(module, nn.modules.batchnorm._BatchNorm):
                nowd_params += list(module.parameters())
        return wd_params, nowd_params

BiSeNet


import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision

from .resnet import Resnet18

from torch.nn import BatchNorm2d


class ConvBNReLU(nn.Module):

    def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1, *args, **kwargs):
        super(ConvBNReLU, self).__init__()
        self.conv = nn.Conv2d(in_chan,
                out_chan,
                kernel_size = ks,
                stride = stride,
                padding = padding,
                bias = False)
        self.bn = BatchNorm2d(out_chan)
        self.relu = nn.ReLU(inplace=True)
        self.init_weight()

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        return x

    def init_weight(self):
        for ly in self.children():
            if isinstance(ly, nn.Conv2d):
                nn.init.kaiming_normal_(ly.weight, a=1)
                if not ly.bias is None: nn.init.constant_(ly.bias, 0)


class UpSample(nn.Module):

    def __init__(self, n_chan, factor=2):
        super(UpSample, self).__init__()
        out_chan = n_chan * factor * factor
        self.proj = nn.Conv2d(n_chan, out_chan, 1, 1, 0)
        self.up = nn.PixelShuffle(factor)
        self.init_weight()

    def forward(self, x):
        feat = self.proj(x)
        feat = self.up(feat)
        return feat

    def init_weight(self):
        nn.init.xavier_normal_(self.proj.weight, gain=1.)


class BiSeNetOutput(nn.Module):

    def __init__(self, in_chan, mid_chan, n_classes, up_factor=32, *args, **kwargs):
        super(BiSeNetOutput, self).__init__()
        self.up_factor = up_factor
        out_chan = n_classes
        self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1)
        self.conv_out = nn.Conv2d(mid_chan, out_chan, kernel_size=1, bias=True)
        self.up = nn.Upsample(scale_factor=up_factor,
                mode='bilinear', align_corners=False)
        self.init_weight()

    def forward(self, x):
        x = self.conv(x)
        x = self.conv_out(x)
        x = self.up(x)
        return x

    def init_weight(self):
        for ly in self.children():
            if isinstance(ly, nn.Conv2d):
                nn.init.kaiming_normal_(ly.weight, a=1)
                if not ly.bias is None: nn.init.constant_(ly.bias, 0)

    def get_params(self):
        wd_params, nowd_params = [], []
        for name, module in self.named_modules():
            if isinstance(module, (nn.Linear, nn.Conv2d)):
                wd_params.append(module.weight)
                if not module.bias is None:
                    nowd_params.append(module.bias)
            elif isinstance(module, nn.modules.batchnorm._BatchNorm):
                nowd_params += list(module.parameters())
        return wd_params, nowd_params


class AttentionRefinementModule(nn.Module):
    def __init__(self, in_chan, out_chan, *args, **kwargs):
        super(AttentionRefinementModule, self).__init__()
        self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1)
        self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size= 1, bias=False)
        self.bn_atten = BatchNorm2d(out_chan)
        #  self.sigmoid_atten = nn.Sigmoid()
        self.init_weight()

    def forward(self, x):
        feat = self.conv(x)
        atten = torch.mean(feat, dim=(2, 3), keepdim=True)
        atten = self.conv_atten(atten)
        atten = self.bn_atten(atten)
        #  atten = self.sigmoid_atten(atten)
        atten = atten.sigmoid()
        out = torch.mul(feat, atten)
        return out

    def init_weight(self):
        for ly in self.children():
            if isinstance(ly, nn.Conv2d):
                nn.init.kaiming_normal_(ly.weight, a=1)
                if not ly.bias is None: nn.init.constant_(ly.bias, 0)


class ContextPath(nn.Module):
    def __init__(self, *args, **kwargs):
        super(ContextPath, self).__init__()
        self.resnet = Resnet18()
        self.arm16 = AttentionRefinementModule(256, 128)
        self.arm32 = AttentionRefinementModule(512, 128)
        self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
        self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
        self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0)
        self.up32 = nn.Upsample(scale_factor=2.)
        self.up16 = nn.Upsample(scale_factor=2.)

        self.init_weight()

    def forward(self, x):
        feat8, feat16, feat32 = self.resnet(x)

        avg = torch.mean(feat32, dim=(2, 3), keepdim=True)
        avg = self.conv_avg(avg)

        feat32_arm = self.arm32(feat32)
        feat32_sum = feat32_arm + avg
        feat32_up = self.up32(feat32_sum)
        feat32_up = self.conv_head32(feat32_up)

        feat16_arm = self.arm16(feat16)
        feat16_sum = feat16_arm + feat32_up
        feat16_up = self.up16(feat16_sum)
        feat16_up = self.conv_head16(feat16_up)

        return feat16_up, feat32_up # x8, x16

    def init_weight(self):
        for ly in self.children():
            if isinstance(ly, nn.Conv2d):
                nn.init.kaiming_normal_(ly.weight, a=1)
                if not ly.bias is None: nn.init.constant_(ly.bias, 0)

    def get_params(self):
        wd_params, nowd_params = [], []
        for name, module in self.named_modules():
            if isinstance(module, (nn.Linear, nn.Conv2d)):
                wd_params.append(module.weight)
                if not module.bias is None:
                    nowd_params.append(module.bias)
            elif isinstance(module, nn.modules.batchnorm._BatchNorm):
                nowd_params += list(module.parameters())
        return wd_params, nowd_params


class SpatialPath(nn.Module):
    def __init__(self, *args, **kwargs):
        super(SpatialPath, self).__init__()
        self.conv1 = ConvBNReLU(3, 64, ks=7, stride=2, padding=3)
        self.conv2 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1)
        self.conv3 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1)
        self.conv_out = ConvBNReLU(64, 128, ks=1, stride=1, padding=0)
        self.init_weight()

    def forward(self, x):
        feat = self.conv1(x)
        feat = self.conv2(feat)
        feat = self.conv3(feat)
        feat = self.conv_out(feat)
        return feat

    def init_weight(self):
        for ly in self.children():
            if isinstance(ly, nn.Conv2d):
                nn.init.kaiming_normal_(ly.weight, a=1)
                if not ly.bias is None: nn.init.constant_(ly.bias, 0)

    def get_params(self):
        wd_params, nowd_params = [], []
        for name, module in self.named_modules():
            if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
                wd_params.append(module.weight)
                if not module.bias is None:
                    nowd_params.append(module.bias)
            elif isinstance(module, nn.modules.batchnorm._BatchNorm):
                nowd_params += list(module.parameters())
        return wd_params, nowd_params


class FeatureFusionModule(nn.Module):
    def __init__(self, in_chan, out_chan, *args, **kwargs):
        super(FeatureFusionModule, self).__init__()
        self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0)
        ## use conv-bn instead of 2 layer mlp, so that tensorrt 7.2.3.4 can work for fp16
        self.conv = nn.Conv2d(out_chan,
                out_chan,
                kernel_size = 1,
                stride = 1,
                padding = 0,
                bias = False)
        self.bn = nn.BatchNorm2d(out_chan)
        #  self.conv1 = nn.Conv2d(out_chan,
        #          out_chan//4,
        #          kernel_size = 1,
        #          stride = 1,
        #          padding = 0,
        #          bias = False)
        #  self.conv2 = nn.Conv2d(out_chan//4,
        #          out_chan,
        #          kernel_size = 1,
        #          stride = 1,
        #          padding = 0,
        #          bias = False)
        #  self.relu = nn.ReLU(inplace=True)
        self.init_weight()

    def forward(self, fsp, fcp):
        fcat = torch.cat([fsp, fcp], dim=1)
        feat = self.convblk(fcat)
        atten = torch.mean(feat, dim=(2, 3), keepdim=True)
        atten = self.conv(atten)
        atten = self.bn(atten)
        #  atten = self.conv1(atten)
        #  atten = self.relu(atten)
        #  atten = self.conv2(atten)
        atten = atten.sigmoid()
        feat_atten = torch.mul(feat, atten)
        feat_out = feat_atten + feat
        return feat_out

    def init_weight(self):
        for ly in self.children():
            if isinstance(ly, nn.Conv2d):
                nn.init.kaiming_normal_(ly.weight, a=1)
                if not ly.bias is None: nn.init.constant_(ly.bias, 0)

    def get_params(self):
        wd_params, nowd_params = [], []
        for name, module in self.named_modules():
            if isinstance(module, (nn.Linear, nn.Conv2d)):
                wd_params.append(module.weight)
                if not module.bias is None:
                    nowd_params.append(module.bias)
            elif isinstance(module, nn.modules.batchnorm._BatchNorm):
                nowd_params += list(module.parameters())
        return wd_params, nowd_params


class BiSeNetV1(nn.Module):

    def __init__(self, n_classes, aux_mode='train', *args, **kwargs):
        super(BiSeNetV1, self).__init__()
        self.cp = ContextPath()
        self.sp = SpatialPath()
        self.ffm = FeatureFusionModule(256, 256)
        self.conv_out = BiSeNetOutput(256, 256, n_classes, up_factor=8)
        self.aux_mode = aux_mode
        if self.aux_mode == 'train':
            self.conv_out16 = BiSeNetOutput(128, 64, n_classes, up_factor=8)
            self.conv_out32 = BiSeNetOutput(128, 64, n_classes, up_factor=16)
        self.init_weight()

    def forward(self, x):
        H, W = x.size()[2:]
        feat_cp8, feat_cp16 = self.cp(x)
        feat_sp = self.sp(x)
        feat_fuse = self.ffm(feat_sp, feat_cp8)

        feat_out = self.conv_out(feat_fuse)
        if self.aux_mode == 'train':
            feat_out16 = self.conv_out16(feat_cp8)
            feat_out32 = self.conv_out32(feat_cp16)
            return feat_out, feat_out16, feat_out32
        elif self.aux_mode == 'eval':
            return feat_out,
        elif self.aux_mode == 'pred':
            feat_out = feat_out.argmax(dim=1)
            return feat_out
        else:
            raise NotImplementedError

    def init_weight(self):
        for ly in self.children():
            if isinstance(ly, nn.Conv2d):
                nn.init.kaiming_normal_(ly.weight, a=1)
                if not ly.bias is None: nn.init.constant_(ly.bias, 0)

    def get_params(self):
        wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params = [], [], [], []
        for name, child in self.named_children():
            child_wd_params, child_nowd_params = child.get_params()
            if isinstance(child, (FeatureFusionModule, BiSeNetOutput)):
                lr_mul_wd_params += child_wd_params
                lr_mul_nowd_params += child_nowd_params
            else:
                wd_params += child_wd_params
                nowd_params += child_nowd_params
        return wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params

训练过程精度变化

alt

测试精度

alt

结果展示

alt

总结

今天的分享到此结束,感兴趣的点点关注,后续将分享更多案例。

参考资料

[1]

WHDLD: https://sites.google.com/view/zhouwx/dataset#h.p_hQS2jYeaFpV0

[2]

BiSeNet: https://arxiv.org/abs/1808.00897

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/217463.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

最长连续序列代码中的细节解读

最长连续序列 一、题目概述 给定一个未排序的整数数组 nums ,找出数字连续的最长序列(不要求序列元素在原数组中连续)的长度。 请你设计并实现时间复杂度为 O(n) 的算法解决此问题。 原题地址:https://leetcode.cn/problems/l…

前端开发学习 (四) 自定义按键修饰符

一、 v-on的按键修饰符 按键修饰符,通俗的来说就是监听键盘输入的事件, 在Vue 中允许为 v-on 在监听键盘事件时添加按键修饰符 修饰符用途.enter当在输入框按下回车时触发.tab当按下tab时触发.delete当按下删除键(通常是键盘上的Delete键&am…

软件工程 课后题 选择 查缺补漏

在一张状态图中只能有一个初态,而终态则可以没有,也可以有多个 所有的对象可以成为各种对象类,每个对象类都定义了一组 方法 通过执行对象的操作可以改变对象的属性,但它必须经过 消息 的传递 UML应用于 基于对象的面向对象的方…

主动张罗,持续改善!震坤行客服团队再获「全国青年文明号」殊荣

主动张罗,持续改善!震坤行客服团队再获「全国青年文明号」殊荣 近日,第21届全国青年文明号集体评选结果揭晓。由共青团中央、最高人民法院、国家发展改革委、工业和信息化部等23家全国创建青年文明号活动组委会成员单位联合印发《关于命名第2…

升辉清洁IPO:广东清洁服务“一哥”还需要讲好全国化的故事

近日,广东物业清洁服务“一哥”升辉清洁第四次冲击IPO成功,拟于12月5日在香港主板挂牌上市。自2021年4月第一次递交招股书,时隔两年半,升辉清洁终于拿到了上市的门票。 天眼查显示,升辉清洁成立于2000年,主…

读SAM代码

def add_decomposed_rel_pos(attn: torch.Tensor,q: torch.Tensor,rel_pos_h: torch.Tensor, 27,80的全零训练参数rel_pos_w: torch.Tensor,q_size: Tuple[int, int], (14,14)k_size: Tuple[int, int], ) -> torch.Tensor:计算相对位置嵌入"""Calculate deco…

Taro 学习教程 - - - - - 开发环境的安装 helloworld

一、Taro脚手架安装 npm install tarojs/cli -g // or yarn add tarojs/cli -g // or cnpm install tarojs/cli -g1.1 如何判断taro安装成功 taro -v正常安装成功之后显示如图: 1.2 环境变量配置(自行判断是否需要手动配置) 如果遇到如下问题,则是需要…

基于stm32的LCD1602与无线蓝牙温湿度显示

这一篇博客是为了实现温湿度的显示,温湿度传感器将数据穿给单片机,单片机又把数据送给LCD1602和蓝牙,让温度和湿度可以再LCD1602显示屏和手机上显示,它的执行逻辑和C51那里基本一样,就是要修改程序,在程序上…

【Linux20.04-qt5.12.4软件安装与初步使用-qt在Linux使用-记录-笔记】

【Linux-qt软件安装与初步使用-qt在Linux使用-记录-笔记】 1、概述2、环境说明3、步骤总结1、了解并选择自己想要安装的版本2、访问 Qt 官方网站3、在 Qt 网站上找到下载部分(自己想下载)4、下载完成后,给安装程序文件赋予执行权限。5、自动配…

单显卡插槽安装英伟达Tesla P4 AI加速卡

Tesla P4是专业AI显卡,只有70瓦功耗,可以作为AI入门使用。 安装时碰到的几个问题: 首先因为单显卡插槽,就需要先安装好机器,然后ssh登录进行相关配置。安装的时候来回插拔了好多次! 其次就是安装驱动时&a…

微信聊天记录年度报告

记忆恢复 若运行代码,执行下列命令安装 git clone https://github.com/LC044/WeChatMsg cd WeChatMsg pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple一、登录微信 切记需要先登录要提取的微信号的微信。 手机端使用聊天记录迁移功…

【电路笔记】-电阻器额定功率

电阻器额定功率 文章目录 电阻器额定功率1、概述2、电阻功率(P)3、功率电阻器4、电阻器额定功率示例15、电阻器额定功率示例2 电能被电阻吸收,因为它是电压和电流的乘积,一些电阻将这种电能转化为热量。 1、概述 当电流由于电阻器…

基础堆溢出原理与DWORD SHOOT实现

堆介绍 堆的数据结构与管理策略 程序员在使用堆时只需要做三件事情:申请一定大小的内存,使用内存,释放内存。 对于堆管理系统来说,响应程序的内存使用申请就意味着要在"杂乱"的堆区中"辨别"出哪些内存是正在…

实用篇 | 利用Flask+Postman为深度学习模型进行快速测试(超详细)

利用FlaskPostman为深度学习模型进行快速测试,以及算法中的一些实例,以后会更新一些新的模板~~ #本文环境:服务器Ubuntu20.04(docker) 目录 1.下载postrman 2.编写flas的app文件 3.在postrman发送请求 4.实例 在服务器创建app.py文件 …

12月2号作业

#include <iostream>using namespace std; class Sofa{ private:string setting;string *lying new string;public:Sofa(){cout << "Sofa::无参构造函数" << endl;}Sofa(string setting,string lying):setting(setting),lying(new string (lying)…

【shell】

shell 一、shell简介二、shell脚本的执行方式三、shell变量3.1 shell变量介绍3.2 shell变量的定义3.1.1 基本语法3.2.2 定义变量的规则3.2.3 将命令的返回值赋予变量 四、环境变量的设置4.1 基本语法&#xff1a; 五、位置参数变量5.1 基本介绍5.2 基本语法 六、预定义变量6.1 …

金蝶云星空表单插件单据体批量删除,序号自增

文章目录 金蝶云星空表单插件单据体批量删除&#xff0c;序号自增字段标识说明表单插件获取单据体数据包移除物料为空的行其他移除物料为空的行的方式&#xff0c;但是测试不通过&#xff0c;不建议使用序号重新生成测试 金蝶云星空表单插件单据体批量删除&#xff0c;序号自增…

新的 BLUFFS 攻击导致蓝牙连接不再私密

蓝牙是一种连接我们设备的低功耗无线技术&#xff0c;有一个新的漏洞需要解决。 中间的攻击者可以使用新的 BLUFFS 攻击轻松窥探您的通信。 法国研究中心 EURECOM 的研究员 Daniele Antonioli 演示了六种新颖的攻击&#xff0c;这些攻击被定义为 BLUFFS&#xff08;蓝牙转发和…

合并两个有序链表[简单]

优质博文&#xff1a;IT-BLOG-CN 一、题目 将两个升序链表合并为一个新的升序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1&#xff1a; 输入&#xff1a;l1 [1,2,4], l2 [1,3,4] 输出&#xff1a;[1,1,2,3,4,4] 示例 2&#xff1a; 输入&#…

java常用知识点记忆

类的继承与多态 类的继承不支持多重继承非private 方法才可以被覆盖覆盖的方法要求&#xff0c;子类中的方法的名字&#xff0c;参数列表&#xff0c;返回类型与父类相同方法的重载是在一个类中定义方法名字相同&#xff0c;但是参数列表不同的方法要是在子类中定义了与父类名字…