练习十二:利用SRAM设计一个FIFO

利用SRAM设计一个FIFO

      • 1,任务目的
      • 2,设计要求
      • 3,FIFO接口的设计思路
      • 4,FIFO接口的测试,top.v
      • 5,FIFO接口的参考设计,fifo_interface.v
      • 6,SRAM模型,sram.v代码
      • 7,vivado生成的RTL原理图
      • 8,波形图
        • 8.1,波形全图
        • 8.2,波形细化
      • 9,

1,任务目的

(1)学习和掌握存取队列管理的状态机设计的基本方法;
(2)了解并掌握用存储器构成FIFO的接口设计的基本技术;
(3)用工程概念来编写完整的测试模块,达到完整测试覆盖;

在本练习中,要求利用练习十一中提供的SRAM模型,设计SRAM读写控制逻辑,使SRAM的行为对用户表现为一个FIFO(先进先出存储器)。

2,设计要求

本练习要求同学设计的FIFO 是同步FIFO,即对FIFO的读/写使用同一个时钟。该FIFO应当提供用户读使能(fiford)和写使能(fifowr)输入控制信号,并输出指示FIFO状态的非空(nempty)和非满(nfull)信号,FIFO的输入、输出数据使用各自的数据总线:in_data和out_data。

实验图1是FIFO接口示意图
在这里插入图片描述

3,FIFO接口的设计思路

4,FIFO接口的测试,top.v

在完成一个设计后,需要进行测试以确认设计的正确性和完整性。而要进行测试,就需要编写测试激励和结果检查程序,即测试平台(testbench)。在某些情况下,如果设计的接口能够预先确定,测试平台的编写也可以在设计完成之前就进行,这样做的好处:在设计测试平台的同时也在更进一步深入了解设计要求,有助于理清设计思路,及时发现设计方案的错误。

编写测试激励时,除了注意对实际可能存在的各种情况的覆盖外,还要有意针对非正常情况下的操作进行测试。在本练习中,就应当进行在FIFO读空后继续读取,FIFO写满后继续写入和FIFO复位后马上读取等操作的测试。

测试激励中通常会有一些复杂操作需要反复进行,如本练习中对FIFO的读写操作。这时可以将这些复杂操作纳入到几个task中,即减少了激励编写的工作量,也使得程序的可读性更好。

下面的测试程序作为一个参考,先用这段程序测试所设计的FIFO接口,然后编写更全面的测试程序。

`timescale 1ns / 1ps
//
// Company: 
// Engineer: 
// 
// Create Date: 2023/12/04 16:18:41
// Design Name: 
// Module Name: test_fifo
// Project Name: 
// Target Devices: 
// Tool Versions: 
// Description: 
// 
// Dependencies: 
// 
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
// 
//


//	测试信号

`define		FIFO_SIZE	8
//      `include	"sram.v"	//	所有的仿真工具不需要加这句,只要 sram.v 模块编译就可以了	
`timescale	1ns/ 1ns

module	test_fifo;
reg		[7:0]	in_data;			//	FIFO 数据总线
reg				fiford, fifowr;		//	FIFO 控制信号

wire	[7:0]	out_data;
wire			nfull, nempty;		// 	FIFO 状态信号

reg				clk, rst;

wire	[7:0]	sram_data;			//	SRAM 数据总线
wire	[10:0]	address;			//  SRAM 地址总线
wire			rd, wr;				//  SRAM 读写控制信号

reg		[7:0]	data_buf	[`FIFO_SIZE:0];		// 数据缓存,用于结果检查
integer			index;

//	系统时钟
initial		clk = 0;
always		#25		clk = ~clk;

//	测试激励序列
initial		begin
		fiford		= 1;
		fifowr		= 1;
		rst			= 1;
		
#40		rst			= 0;	
#42		rst			= 1;

if(nempty)		$display($time, "Error: FIFO be empty, nempty should be low. \n");

//		连续写 FIFO
		index		= 0;	
repeat(`FIFO_SIZE)	begin
	data_buf[index]	= $random;
	write_fifo(data_buf[index]);
	index	= index + 1;
	end

if(nfull)	$display($time, "Error: FIFO full, nfull should be low. \n");
repeat(2)	write_fifo($random);

#200

//		连续读FIFO
		index		= 0;
read_fifo_compare(data_buf[index]);
if(~nfull)		$display($time, "Error: FIFO not full, nfull should be high. \n");

repeat(`FIFO_SIZE - 1)	begin
		index	 	= index + 1;
		read_fifo_compare(data_buf[index]);
end

if(nempty)	$display($time, "Error: FIFO be empty, nempty should be low. \n");

repeat(2)	read_fifo_compare(8'bx);

reset_fifo;

//		写后续 FIFO
repeat(`FIFO_SIZE * 2)		begin
	data_buf[0]		= $random;
	write_fifo(data_buf[0]);
	read_fifo_compare(data_buf[0]);
end

//		异常操作
reset_fifo;
read_fifo_compare(8'bx);
write_fifo(data_buf[0]);
read_fifo_compare(data_buf[0]);

$stop;

end

fifo_interface	fifo_mk(
.in_data			(in_data		),
.out_data			(out_data		),
.fiford				(fiford			),
.fifowr				(fifowr			),
.nfull				(nfull			),
.nempty				(nempty			),
.address			(address		),
.sram_data			(sram_data		),
.rd					(rd				),
.wr					(wr				),
.clk				(clk			),
.rst				(rst			)
);

sram	m1(
.Address			(address		),
.Data				(sram_data		),
.SRG				(rd				),		//	SRAM 读使能
.SRE				(1'b0			),		//	SRAM 片选,低有效
.SRW				(wr				)		//	SRAM 写使能
);

task			write_fifo;
input	[7:0]	data;

begin
		in_data		= data;
#50		fifowr		= 0;			//	往 SRAM 中写数
#200	fifowr		= 1;
#50;
end

endtask

task	read_fifo_compare;
input	[7:0]	data;
begin
#50		fiford		= 0;			// 从 SRAM 中读数		
#200	fiford		= 1;
	if(out_data != data)
		$display($time, "Error: Data retrieved (%h) not match the one stored(%h) .\n", out_data, data);
#50;
end
endtask

task	reset_fifo;
begin
#40		rst			= 0;
#40		rst			= 1;
end
endtask

endmodule

5,FIFO接口的参考设计,fifo_interface.v

`timescale 1ns / 1ps
//
// Company: 
// Engineer: 
// 
// Create Date: 2023/12/04 16:14:09
// Design Name: 
// Module Name: fifo_interface
// Project Name: 
// Target Devices: 
// Tool Versions: 
// Description: 
// 
// Dependencies: 
// 
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
// 
//


//	FIFO接口的参考设计
`define		SRAM_SIZE	8	// 为减少对 FIFO 控制器的测试工作量,置 SRAM 空间为 8 字节
//      `timescale	1ns/ 1ns	

module	fifo_interface(
in_data,		// 	用户的输入数据总线 
out_data, 		//	用户的输出数据总线
fiford,			//	FIFO读控制信号,低电平有效
fifowr,			//	FIFO写控制信号,低电平有效
nfull,			//	
nempty,			//	
address,		//	到 SRAM 的地址总线
sram_data,		//	到 SRAM 的双向数据总线
rd,				//	SRAM 读使能,低电平有效
wr,				//	SRAM 写使能,低电平有效
clk,			//	系统时钟信号
rst				//	全局复位信号,低电平有效
);
//	来自用户的控制输入信号
input			fiford, fifowr, clk, rst;

//	来自用户的数据信号
input	[7:0]	in_data;
output	[7:0]	out_data;

reg		[7:0]	in_data_buf;	//	输入数据缓冲区
reg		[7:0]	out_data_buf;	//	输出数据缓冲区

//	输出到用户的状态指示信号
output			nfull, nempty;
reg				nfull, nempty;

//	输出到 SRAM 的控制信号
output			rd, wr;

//	到 SRAM 的双向数据总线
inout	[7:0]	sram_data;

//	输出到 SRAM 的地址总线
output 	[10:0]	address;
reg		[10:0]	address;

//	internal register
reg		[10:0]	fifo_wp;		// 	FIFO写指针
reg		[10:0]	fifo_rp;		//	FIFO读指针

reg		[10:0]	fifo_wp_next;	//	fifo_wp 的下一个值
reg		[10:0]	fifo_rp_next;	//	fifo_rp	的下一个值

reg		near_full, near_empty;

reg		[3:0]	state;			//	SRAM 操作状态机寄存器

parameter		idle 			= 4'b0000;
parameter		read_ready		= 4'b0100;
parameter		read			= 4'b0101;
parameter		read_over		= 4'b0111;
				
parameter		write_ready		= 4'b1000;
parameter		write			= 4'b1001;
parameter		write_over		= 4'b1011;

//	SRAM 操作状态机
always@(posedge clk or negedge rst)
	if(~rst)
		state		<= idle;
	else
		case(state)
			idle:		// 等待 FIFO 的操作控制信号
				if(fifowr	== 0 && nfull)		//	用户发出写 FIFO 申请,且 FIFO 未满
					state	<= write_ready;
				else if(fiford == 0 && nempty)	//	用户发出读 FIFO 申请,且 FIFO 未空
					state	<= read_ready;
				else
					state	<= idle;			// 没有对 FIFO 操作的申请
			
			read_ready:		// 建立 SRAM 操作所需地址和数据
				state	<= read;
				
			read:			//	等待用户结束当前读操作
				if(fiford == 1)
					state	<= read_over;
				else
					state	<= read;
			
			read_over:		//	继续给出 SRAM 地址以保证数据稳定
				state	<= idle;
			
			write_ready:	//	建立 SRAM 操作所需地址和数据
				state	<= write;
				
			write:			//	等待用户结束当前写操作
				if(fifowr == 1)
					state	<= write_over;
				else
					state	<= write;
			write_over:		//	继续给出 SRAM 地址和写入数据以保证数据稳定
				state	<= idle;
			
			default:
				state	<= idle;
		endcase

//	产生 SRAM 操作相关信号
assign		rd = ~state[2];		// state 为 read_ready 或 read 或 read_over 
assign		wr = (state == write) ? fifowr : 1'b1;

always@(posedge clk)
	if(~fifowr)
		in_data_buf		<= in_data;
		
assign		sram_data = (state[3])? in_data_buf : 8'hzz;
//	state 为 write_ready 或 write 或 write_over
			
always@(state or fiford or fifowr or fifo_wp or fifo_rp)
	if(state[2] || ~fiford)
		address		= fifo_rp;
	else if(state[3] || ~fifowr)
		address		= fifo_wp;
	else
		address		= 'bz;

//	产生 FIFO 数据
assign		out_data	= (state[2]) ? sram_data : 8'bz;

always@(posedge clk)
	if(state == read)
		out_data_buf	<= sram_data;
		
//	计算 FIFO 读写指针
always@(posedge clk or negedge rst)
	if(~rst)
		fifo_rp		<= 0;
	else if(state == read_over)
		fifo_rp		<= fifo_rp_next;

always@(fifo_rp)
	if(fifo_rp == `SRAM_SIZE - 1)
		fifo_rp_next	= 0;
	else 
		fifo_rp_next	= fifo_rp + 1;

always@(posedge clk or negedge rst)
	if(~rst)
		fifo_wp		<= 0;
	else if(state == write_over)
		fifo_wp		<= fifo_wp_next;

always@(fifo_wp)
	if(fifo_wp == `SRAM_SIZE - 1)
		fifo_wp_next	= 0;
	else
		fifo_wp_next	= fifo_wp + 1;
		
always@(posedge clk or negedge rst)
	if(~rst)
		near_empty	<= 1'b0;
	else if(fifo_wp == fifo_rp_next)
		near_empty	<= 1'b1;
	else
		near_empty	<= 1'b0;

always@(posedge clk or negedge rst)
	if(~rst)
		nempty		<= 1'b0;
	else if(near_empty && state == read)
		nempty		<= 1'b0;
	else if(state == write)
		nempty		<= 1'b1;

always@(posedge clk or negedge rst)
	if(~rst)
		near_full	<= 1'b0;
	else if(fifo_rp == fifo_wp_next)
		near_full	<= 1'b1;
	else 
		near_full	<= 1'b0;

always@(posedge clk or negedge rst)
	if(~rst)
		nfull		<= 1'b1;
	else if(near_full && state == write)
		nfull		<= 1'b0;
	else if(state == read)
		nfull		<= 1'b1;

//      //  调用 SRAM
//      sram	m1(
//      .Address			(address		),
//      .Data				(sram_data		),
//      .SRG				(rd				),		//	SRAM 读使能
//      .SRE				(1'b0			),		//	SRAM 片选,低有效
//      .SRW				(wr				)		//	SRAM 写使能
//      );

endmodule

6,SRAM模型,sram.v代码

`timescale 1ns / 1ps
//
// Company: 
// Engineer: 
// 
// Create Date: 2023/12/04 16:18:04
// Design Name: 
// Module Name: sram
// Project Name: 
// Target Devices: 
// Tool Versions: 
// Description: 
// 
// Dependencies: 
// 
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
// 
//


`timescale 1ns / 1ps
//
// Company: 
// Engineer: 
// 
// Create Date: 2023/12/01 17:38:38
// Design Name: 
// Module Name: sram
// Project Name: 
// Target Devices: 
// Tool Versions: 
// Description: 
// 
// Dependencies: 
// 
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
// 
//


/*	sram is Verilog HDL model for HM - 65162, 2K*8 bit Asynchronous(异步) CMOS
Static RAM. It is used in simulation to substitute the real RAM to verify whether
the writing or reading of the RAM is OK.
This module is a behavioral model for simulation only, not synthesizable. It's
writing and reading function are verified.
*/

module		sram(
Address, Data, SRG, SRE, SRW
);
input	[10:0]	Address;
input			SRG;	// output enable
input			SRE;	// chip   enable
input			SRW;	// write  enable

inout	[7:0]	Data;	// Bus

wire	[10:0]	Addr	= Address;
reg		[7:0]	RdData;
reg		[7:0]	SramMem	[0:'h7ff];
reg				RdSramDly,	RdFlip;
wire	[7:0]	FlpData;
wire	[7:0]	Data;

reg				WR_flag;	// to judge the signals according to the specification of 
							// HM-65162
integer			i;

wire			RdSram = ~SRG & ~SRE;
wire			WrSram = ~SRW & ~SRE;

reg		[10:0]	DelayAddr;
reg		[7:0]	DelayData;
reg				WrSramDly;

integer			file;

assign			FlpData	= (RdFlip) 	  ? ~RdData : RdData;
assign			Data	= (RdSramDly) ? FlpData : 'hz;

/*
parameters of read circle
*/

//		参数序号、最大或最小、参数含义
parameter		TAVQV	= 90,	// 2, max, address access time
				TELQV	= 90,	// 3, max, chip enable access time
				TELQX	= 5,	// 4, min, chip enable output enable time 
				TGLQV	= 65,	// 5, max, output enable access tiem
				TGLQX	= 5,	// 6, min, output enable output enable time 
				TEHQZ 	= 50,	// 7, max, chip enable output disable time
				TGHQZ	= 40,	// 8, max, output enable output disable time
				TAVQX	= 5;	// 9, min, output hold from address change

parameter		TAVWL	= 10,	// 12, min, address setup time
				TWLWH	= 55,	// 13, min, chip enable pulse setup time,
											// write enable pluse width,
				TWHAX	= 15,	// 14, min10, write enable read setup time,
											// 读上升沿后地址保留时间
				TWLQZ	= 50,	// 16, max, write enable output disable time
				TDVWH	= 30,	// 17, min, data setup time
				TWHDX	= 20,	// 18, min15, data hold time
				TWHQX	= 20,	// 19, min0, write enable output enable time, 0
				TWLEH	= 55,	// 20, min, write enable pulse setup time
				TDVEH	= 30,	// 21, min, chip enable data setup time
				TAVWH	= 70;	// 22, min65, address valid to end of write

initial		begin
	file = $fopen("ramlow.txt");
	if(!file)	begin
		$display("Could not open the file.");
		$stop;
		end
end

initial		begin
	for(i = 0; i < 'h7ff; i = i + 1)
		SramMem[i] = i;
	// monitor($time, "DelayAddr = %h, DelayData = %h", DelayAddr, DelayData);
end

initial		RdSramDly	= 0;
initial		WR_flag		= 1;

//		READ CIRCLE
always@(posedge RdSram)		#TGLQX	RdSramDly = RdSram;
always@(posedge SRW)		#TWHQX	RdSramDly = RdSram;
always@(Addr)	begin
	#TAVQX;
	RdFlip	= 1;
	#(TGLQV - TAVQX);		// address access time
	if(RdSram)
		RdFlip = 0;
end	

always@(posedge RdSram)	begin
	RdFlip	= 1;
	#TAVQV;					// output enable access time
	if(RdSram)	
		RdFlip = 0;
end

always@(Addr)			#TAVQX	RdFlip 		= 1;
always@(posedge SRG)	#TEHQZ	RdSramDly	= RdSram;
always@(posedge SRE)	#TGHQZ	RdSramDly	= RdSram;
always@(negedge SRW)	#TWLQZ	RdSramDly	= 0;

always@(negedge WrSramDly or posedge RdSramDly)		RdData = SramMem[Addr];

//		WRITE CIRCLE
always@(Addr)			#TAVWL	DelayAddr	= Addr;		// Address setup
always@(Data)			#TDVWH	DelayData	= Data;		// Data setup
always@(WrSram)			#5		WrSramDly	= WrSram;
always@(Addr or Data or WrSram)	WR_flag		= 1;

always@(negedge SRW)	begin
	#TWLWH;					// Write enable pulse width
	if(SRW)		begin
		WR_flag		= 0;
		$display("ERROR! Can't write! Write enable time(W) is too short!");
		end
end
	
always@(negedge SRW)	begin
	#TWLEH;					// Write enable pulse setup time
	if(SRE)		begin
		WR_flag		= 0;
		$display("ERROR! Can't write! write enable pulse setup time(E) is too short!");
		end
end

always@(posedge SRW)	begin
	#TWHAX;					// Write enable read setup time
	if(DelayAddr !== Addr)	begin
		WR_flag		= 0;
		$display("ERROR! Can't write! Write enable read setup time is too short!");
		end
end

always@(Data)
	if(WrSram)	begin
		#TDVEH;				// chip enable data setup time
		if(SRE)		begin
			WR_flag	= 0;
			$display("ERROR! Can't write! chip enable data setup time is too short!");
			end
end
		
always@(Data)
	if(WrSram)	begin
		#TDVEH;
		if(SRW)		begin
			WR_flag = 0;
			$display("ERROR! Can't write! chip enable data setup time is too short!");
			end
end

always@(posedge SRW)	begin
	#TWHDX;			// Data hold time
	if(DelayData !== Data)
		$display("Warning! Data hold time is too short!");
end

always@(DelayAddr or DelayData or WrSramDly)
	if(WrSram && WR_flag)	begin
		if(!Addr[5])	begin
				#15	SramMem[Addr]	= Data;
					//	$display("mem[%h] = %h", Addr, Data);
					$fwrite(file, "mem[%h] = %h", Addr, Data);
					if(Addr[0] && Addr[1])	$fwrite(file, "\n");
			end
		else	begin
			$fclose(file);
			$display("Please check the txt.");
			$stop;
			end
end

endmodule

7,vivado生成的RTL原理图

在这里插入图片描述

8,波形图

8.1,波形全图

在这里插入图片描述

8.2,波形细化

在这里插入图片描述

9,

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/216885.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

acwing算法基础之动态规划--数位统计DP、状态压缩DP、树形DP和记忆化搜索

目录 1 基础知识2 模板3 工程化 1 基础知识 暂无。。。 2 模板 暂无。。。 3 工程化 题目1&#xff1a;求a~b中数字0、数字1、…、数字9出现的次数。 思路&#xff1a;先计算1~a中每位数字出现的次数&#xff0c;然后计算1~b-1中每位数字出现的次数&#xff0c;两个相减即…

C盘分析文件大小的软件

https://sourceforge.net/projects/windirstat/ 上面是windirstat的下载链接 界面是这样的&#xff1a; 选择C盘或者D盘&#xff0c;点击OK&#xff0c;就可以分析了 然后就可以看到哪些占比最高&#xff0c;可以针对性的清理

react结合vant的Dialog实现签到弹框操作

1.需求 有时候在开发的时候&#xff0c;需要实现一个签到获取积分的功能&#xff0c;使用react怎么实现呢&#xff1f; 需求如下&#xff1a; 1.当点击“签到”按钮时&#xff0c;弹出签到框 2.展示签到信息&#xff1a; 签到天数&#xff0c; 对应天数签到能够获取的积分&…

JIRA 重建索引

JIRA为了增快搜索速度&#xff0c;为所有的问题的字段生成一个索引文件。这个索引文件存在磁盘的一个文件里面&#xff0c; 并且会实时更新。但是有时候某些操作后&#xff08;例如增加自定义字段&#xff09;&#xff0c;需要重新建索引。 详情请见 Re-indexing after major c…

UDS 诊断报文格式

文章目录 网络层目的N_PDU 格式诊断报文的分类&#xff1a;单帧、多帧 网络层目的 N_PDU(network protocol data unit)&#xff0c;即网络层协议数据单元 网络层最重要的目的就是把数据转换成符合标准的单一数据帧&#xff08;符合can总线规范的&#xff09;&#xff0c;从而…

Spring Initial 脚手架国内镜像地址

官方的脚手架下载太慢了&#xff0c;并且现在没有了Java8的选项&#xff0c;所以找到国内的脚手架镜像地址&#xff0c;推荐给大家。 首先说官方的脚手架 官方的脚手架地址为&#xff1a; https://start.spring.io/ 但是可以看到&#xff0c;并没有了Java8的选项。 所以推荐…

手把手带你离线部署Walrus,体验极简应用交付

Walrus 0.4 已于近日发布&#xff0c;新版本中采用的应用模型可以让运维团队仅需配置1次&#xff0c;即可在多模态的基础设施及环境中运行包括应用服务及周边依赖资源在内的全套应用系统。这极大减少了运维人员的工作量&#xff0c;同时为研发人员屏蔽了底层基础设施的复杂度. …

Web漏洞分析-SQL注入XXE注入(上)

随着互联网的不断普及和Web应用的广泛应用&#xff0c;网络安全问题愈发引起广泛关注。在网络安全领域中&#xff0c;SQL注入和XXE注入是两个备受关注的话题&#xff0c;也是导致许多安全漏洞的主要原因之一。本博客将深入研究这两种常见的Web漏洞&#xff0c;带您探寻背后的原…

十二月四日多继承

#include <iostream>using namespace std; //定义沙发类 class Sofa { private:string *sitting; public:Sofa(){}//无参构造函数Sofa(string sitting):sitting(new string (sitting))//有参构造函数{}~Sofa() //析构函数{delete sitting;}Sofa &op…

DeepStream--测试PCB-Defect-Detection

GitHub - clintonoduor/PCB-Defect-Detection-using-Deepstream: PCB defect detection using deepstream & YoloV5我参考了了这个代码&#xff0c;作者基于YoloV5&#xff0c;训练一个电路板检测的模型&#xff0c;训练数据集来自https://robotics.pkusz.edu.cn/resources…

4K-Resolution Photo Exposure Correction at 125 FPS with ~8K Parameters

MSLTNet开源 | 4K分辨率125FPS8K的参数量&#xff0c;怎养才可以拒绝这样的模型呢&#xff1f; 错误的曝光照片的校正已经被广泛使用深度卷积神经网络或Transformer进行广泛修正。尽管这些方法具有令人鼓舞的表现&#xff0c;但它们通常在高分辨率照片上具有大量的参数数量和沉…

GitHub项目推荐-Deoldify

有小伙伴推荐了一个老照片上色的GitHub项目&#xff0c;看了简介&#xff0c;还不错&#xff0c;推荐给大家。 项目地址 GitHub - SpenserCai/sd-webui-deoldify: DeOldify for Stable Diffusion WebUI&#xff1a;This is an extension for StableDiffusions AUTOMATIC1111 w…

Stm32 CubeIDE对RTC的日期、时间读写,后备存储的读写

Stm32 CubeIDE对RTC的日期、时间读写&#xff0c;后备存储的读写&#xff0c;一折腾又是好多的问题&#xff0c;现在梳理一下&#xff0c;后面的不要过多踩坑了。 用STM32CubeIDE生成代码 这里有时间和日期的设置&#xff0c;在代码中也会生成相应的代码&#xff0c;首次设置后…

密集书库是什么意思?图书馆密集书库的书可以借出吗

密集书库是一种用于存储大量书籍和资料的高密度储存设施。它通常包括一系列钢制书架和可移动的储存架&#xff0c;使得书籍可以被紧密地排列和存储&#xff0c;以最大程度地利用存储空间。同时&#xff0c;密集书库还有各种自动化系统&#xff0c;如自动化取书系统、气候控制系…

微信小程序引入node_modules依赖

微信小程序不支持直接读取node_modules 首先在目录文件夹下cmd输入npm init命令 D:\小程序\project\calendar\calendar_1>npm init This utility will walk you through creating a package.json file. It only covers the most common items, and tries to guess sensible…

甘草书店记:6# 2023年10月31日 星期二 「梦想从来不是一夜之间实现的」

甘草书店 今天收到甘草书店第二版装修设计平面图&#xff0c;与理想空间越来越近。 于我而言&#xff0c;每一次世俗意义上所谓的成功都不如文艺作品中表现的那样让人欢腾雀跃。当你用尽120分努力&#xff0c;达到了冲刺满分的实力时&#xff0c;得个优秀的成绩也并不意外。 …

Pycharm配置jupyter使用notebook详细指南(可换行conda环节)

本教程为事后记录&#xff0c;部分图片非实操图片。 详细记录了pycharm配置jupyter的方法&#xff0c;jupyter添加其他conda环境的方法&#xff0c;远程密码调用jupyter的方法&#xff0c;修改jupyter工作目录的方法。 文章目录 一、入门级配置1. Pycharm配置Conda自带的jupyt…

案例研究|作为一家BI厂商,飞致云是如何人人使用DataEase的?

杭州飞致云信息科技有限公司&#xff08;以下简称为飞致云&#xff09;长期秉持“软件用起来才有价值&#xff0c;才有改进的机会”的核心价值观&#xff0c;以“为数字经济时代创造好软件”为使命&#xff0c;致力于成为中国数字化团队首选的通用工具软件提供商。在软件产品不…

容器与集群——通过deployment 创建pod以及Java Web应用的容器化发布

## 一、通过deployment 创建pod 1.1 编写yaml文件 1.2 安装pod 创建kubectl create -f dp-nginx.yaml 查看Deployment信息 1.3 查看相关信息 查看pod信息kubecel get pods 查看rs信息 二、Java Web应用的容器化发布 1. 环境准备 部署K8s集群并启动。 为了与其他pod…

基恩士软件的基本操作(六,KV脚本的使用)

目录 什么是KV脚本&#xff1f; KV脚本有什么用&#xff1f; 怎么使用KV脚本&#xff08;脚本不能与梯形图并联使用&#xff09;&#xff1f; 插入框脚本&#xff08;CtrlB&#xff09; 插入域脚本&#xff08;CtrlR&#xff09; 区别 脚本语句&#xff08;.T是字符串类…