深度学习(五):pytorch迁移学习之resnet50

1.迁移学习

迁移学习是一种机器学习方法,它通过将已经在一个任务上学习到的知识应用到另一个相关任务上,来改善模型的性能。迁移学习可以解决数据不足或标注困难的问题,同时可以加快模型的训练速度。
在这里插入图片描述

迁移学习的核心思想是将源领域的知识迁移到目标领域中。源领域是已经有大量标注数据的领域,而目标领域是需要解决的新问题。通过迁移学习,源领域的知识可以帮助目标领域的学习过程,提高模型的泛化能力和性能。

迁移学习可以通过多种方式实现,包括特征提取、模型微调和领域自适应等方法。特征提取是将源领域的特征应用到目标领域中,模型微调是在源模型的基础上对目标模型进行调整,领域自适应则是通过对目标领域进行适应性训练来提高性能。

迁移学习在计算机视觉、自然语言处理等领域都有广泛的应用。它可以帮助解决许多实际问题,提高模型的效果和效率。

1.1分类

  1. 基于实例的迁移学习(Instance-based Transfer Learning):
    基于实例的迁移学习是将源任务中的实例样本直接应用于目标任务。这种方法通常通过调整实例的权重或选择一部分实例来实现。例如,如果源任务是图像分类,目标任务是目标检测,可以将源任务中的图像样本用作目标任务的训练数据,从而提供更多的样本和多样性。

  2. 基于特征的迁移学习(Feature-based Transfer Learning)
    基于特征的迁移学习是将源任务的特征表示应用于目标任务。这种方法通常通过共享特征提取器或调整特征的权重来实现。例如,在计算机视觉中,可以使用预训练的卷积神经网络(CNN)作为特征提取器,将其冻结或微调,并将其特征用于目标任务的训练。

  3. 基于模型的迁移学习(Model-based Transfer Learning)
    基于模型的迁移学习是将源任务的模型应用于目标任务。这种方法通常通过微调源模型或在源模型的基础上构建新模型来实现。例如,在自然语言处理中,可以使用预训练的语言模型(如BERT)作为源模型,然后在目标任务上微调该模型,以适应目标任务的特定要求。

  4. 基于关系的迁移学习(Relation-based Transfer Learning)
    基于关系的迁移学习是通过学习源任务和目标任务之间的关系,来进行知识迁移和模型优化。这种方法通常通过学习源任务和目标任务之间的相似性、相关性或映射关系来实现。例如,在推荐系统中,可以通过学习用户和物品之间的关系,将源任务中学习到的用户兴趣模型应用于目标任务中,以提高推荐的准确性和个性化程度。

1.2训练技巧

  1. 预训练模型(Pretrained Models):使用在大规模数据集上预训练好的模型作为迁移学习的起点,可以帮助提取通用的特征表示。这些预训练模型可以是在类似任务上训练得到的,也可以是在其他领域的任务上训练得到的。

  2. 微调(Fine-tuning):在迁移学习中,可以将预训练模型的部分或全部参数作为初始参数,然后在目标任务上进行微调。通过在目标任务上进行有限的训练,可以使模型适应目标任务的特定要求,同时保留预训练模型的通用特征。

  3. 冻结层(Freezing Layers):在微调过程中,可以选择冻结预训练模型的一部分或全部层,只更新目标任务相关的层。这样可以防止过拟合和减少训练时间,尤其在目标任务数据较少的情况下效果更明显。

  4. 数据增强(Data Augmentation):通过对目标任务的数据进行增强,如旋转、翻转、裁剪等操作,可以扩充数据集的多样性,提高模型的泛化能力。

  5. 领域自适应(Domain Adaptation):当源任务和目标任务的数据分布存在差异时,可以通过领域自适应技术来减小领域间的差距。例如,使用领域自适应方法对源领域和目标领域进行特征对齐或实例重权,以提高模型在目标领域上的性能。

  6. 多任务学习(Multi-task Learning):当源任务和目标任务之间存在相关性时,可以将它们作为多个任务一起进行训练。通过共享模型参数和学习任务间的关系,可以提高模型的泛化能力和效果。

2.resnet50

ResNet-50是一种深度残差网络(Residual Network),是ResNet系列中的一种经典模型。它由微软研究院的Kaiming He等人于2015年提出,被广泛应用于计算机视觉任务,如图像分类、目标检测和图像分割等。
在这里插入图片描述

2.1 Convolutional Block和Identity Block

ResNet-50有两个基本块Convolutional Block和Identity Block。
在这里插入图片描述

  1. Convolutional Block(卷积块):Convolutional Block由一系列卷积层组成,用于学习图像的特征。它的典型结构是:

    • 1x1卷积层:用于减少通道数,降低计算复杂度。
    • 3x3卷积层:用于学习特征。
    • 1x1卷积层:用于恢复通道数,保持特征图的维度一致

    Convolutional Block通常在网络的开始部分使用,用于提取图像的低级特征。

  2. Identity Block(恒等块):Identity Block由三个卷积层组成,其中第一个和第三个卷积层是1x1卷积层,中间的卷积层是3x3卷积层。它的结构如下:

    • 1x1卷积层:用于减少或恢复通道数。
    • 3x3卷积层:用于学习特征。
    • 1x1卷积层:用于恢复通道数。

    Identity Block的输入和输出具有相同的维度,通过跳跃连接(skip connection)将输入直接添加到输出上,保留了原始输入的信息。

ResNet-50通过堆叠Convolutional Block和Identity Block来构建整个网络。这些块的设计使得ResNet-50能够更深更容易训练,并且在图像分类等任务上取得了很好的性能。

2.2 批归一化(Batch Normalization)层

ResNet-50使用了对批归一化(Batch Normalization)层。

批归一化是一种常用的正则化技术,用于加速神经网络的训练过程并提高模型的性能。在ResNet-50中,批归一化层通常在卷积层之后、激活函数之前应用。

批归一化的作用是对每个小批量的输入进行归一化处理,使得输入的均值接近于0,方差接近于1。这有助于缓解梯度消失和梯度爆炸问题,提高网络的稳定性和收敛速度。

在ResNet-50中,批归一化层的操作如下:

  1. 对于每个通道,计算小批量输入的均值和方差。
  2. 使用计算得到的均值和方差对小批量输入进行归一化。
  3. 对归一化后的输入进行缩放和平移,通过可学习的参数进行调整。
  4. 最后,通过激活函数对调整后的输入进行非线性变换。

批归一化层的引入有助于加速训练过程,提高模型的泛化能力,并且可以允许使用更高的学习率。在ResNet-50中,批归一化层的使用有助于网络的训练和性能的提升。

3.代码实现

3.1数据集

选取imagenet数据集

# 下载数据集
dataset_url = "https://s3.amazonaws.com/fast-ai-imageclas/imagewoof2-160.tgz"
download_url(dataset_url, '.')

# 提取压缩文件
with tarfile.open('./imagewoof2-160.tgz', 'r:gz') as tar:
   tar.extractall(path='./data')

# 查看数据目录中的内容
data_dir = './data/imagewoof2-160'
print(os.listdir(data_dir))
classes = os.listdir(data_dir + "/train")
print(classes)

在这里插入图片描述
数据进行增强和归一化,创建数据加载器,划分数据集,这里由于我的设备跑不动,所以只加载了25分之一。

# 数据转换(归一化和数据增强)
stats = ((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
train_tfms = tt.Compose([tt.RandomCrop(160, padding=4, padding_mode='reflect'), 
                        tt.RandomHorizontalFlip(), 
                        tt.ToTensor(), 
                        tt.Normalize(*stats,inplace=True)])
valid_tfms = tt.Compose([tt.Resize([160,160]),tt.ToTensor(), tt.Normalize(*stats)])

# 创建ImageFolder对象
train_ds = ImageFolder(data_dir+'/train', train_tfms)
valid_ds = ImageFolder(data_dir+'/val', valid_tfms)
print(f'训练数据集长度 = {len(train_ds)}')
print(f'验证数据集长度 = {len(valid_ds)}')
# 计算数据集中的样本数量
num_samples = int(len(train_ds)/25)

print(num_samples)
# 创建一个随机索引
indices = list(range(num_samples))

# 打乱索引
random.shuffle(indices)

# 设置训练集的大小
train_size = int(0.8 * num_samples)

# 创建训练集和验证集的索引
train_indices = indices[:train_size]
valid_indices = indices[train_size:]

# 创建训练集和验证集的随机抽样器
train_sampler = SubsetRandomSampler(train_indices)
valid_sampler = SubsetRandomSampler(valid_indices)

# 设置批量大小
batch_size = 64

# 创建训练集和验证集的数据加载器
train_dl = DataLoader(train_ds, batch_size=32, sampler=train_sampler)
valid_dl = DataLoader(valid_ds, batch_size=32, sampler=valid_sampler)


""" # PyTorch数据加载器
# 创建数据加载器

train_dl = DataLoader(train_ds, batch_size, shuffle=True)
valid_dl = DataLoader(valid_ds, batch_size*2) """

#展示数据
def show_batch(dl):
    for images, labels in dl:
        fig, ax = plt.subplots(figsize=(12, 12))
        ax.set_xticks([]); ax.set_yticks([])
        ax.imshow(make_grid(images[:64], nrow=8, normalize=True).permute(1, 2, 0))
        break
    plt.show()
    
show_batch(train_dl)

3.2 设置设备

#设置设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def get_default_device():
    """Pick GPU if available, else CPU"""
    if torch.cuda.is_available():
        return torch.device('cuda')
    else:
        return torch.device('cpu')
    
def to_device(data, device):
    """Move tensor(s) to chosen device"""
    if isinstance(data, (list,tuple)):
        return [to_device(x, device) for x in data]
    return data.to(device, non_blocking=True)

class DeviceDataLoader():
    """Wrap a dataloader to move data to a device"""
    def __init__(self, dl, device):
        self.dl = dl
        self.device = device
        
    def __iter__(self):
        """Yield a batch of data after moving it to device"""
        for b in self.dl: 
            yield to_device(b, self.device)

    def __len__(self):
        """Number of batches"""
        return len(self.dl)

train_dl = DeviceDataLoader(train_dl, device)
valid_dl = DeviceDataLoader(valid_dl, device)

3.3加载resnet50网络结构

这里调整网络结构,写了一个冻结层的函数

def accuracy(outputs, labels):
    _, preds = torch.max(outputs, dim=1)
    return torch.tensor(torch.sum(preds == labels).item() / len(preds))

class ImageClassificationBase(nn.Module):
    def training_step(self, batch):
        images, labels = batch 
        out = self(images)                  # Generate predictions
        loss = F.cross_entropy(out, labels) # Calculate loss
        return loss
    
    def validation_step(self, batch):
        images, labels = batch 
        out = self(images)                    # Generate predictions
        loss = F.cross_entropy(out, labels)   # Calculate loss
        acc = accuracy(out, labels)           # Calculate accuracy
        return {'val_loss': loss.detach(), 'val_acc': acc}
        
    def validation_epoch_end(self, outputs):
        batch_losses = [x['val_loss'] for x in outputs]
        epoch_loss = torch.stack(batch_losses).mean()   # Combine losses
        batch_accs = [x['val_acc'] for x in outputs]
        epoch_acc = torch.stack(batch_accs).mean()      # Combine accuracies
        return {'val_loss': epoch_loss.item(), 'val_acc': epoch_acc.item()}
    
    def epoch_end(self, epoch, result):
        print("Epoch [{}], last_lr: {:.5f}, train_loss: {:.4f}, val_loss: {:.4f}, val_acc: {:.4f}".format(
            epoch, result['lrs'][-1], result['train_loss'], result['val_loss'], result['val_acc']))

class Resnet50(ImageClassificationBase):
    def __init__(self):
        super().__init__()
        # Use a pretrained model
        self.network = models.resnet50(pretrained=True)
        # Replace last layer
        num_ftrs = self.network.fc.in_features
        self.network.fc = nn.Linear(num_ftrs, 10)
    
    def forward(self, xb):
        return torch.sigmoid(self.network(xb))
    
    def freeze(self):
        # To freeze the residual layers
        for param in self.network.parameters():
            param.require_grad = False
        for param in self.network.fc.parameters():
            param.require_grad = True
    
    def unfreeze(self):
        # Unfreeze all layers
        for param in self.network.parameters():
            param.require_grad = True

model = to_device(Resnet50(), device)

3.4训练及保存模型

    # Set up cutom optimizer with weight decay
    optimizer = opt_func(model.parameters(), max_lr, weight_decay=weight_decay)
    # Set up one-cycle learning rate scheduler
    sched = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr, epochs=epochs, 
                                                steps_per_epoch=len(train_loader))

这段代码首先定义了一个优化器 optimizer,它使用余弦退火(Cosine Annealing)策略进行学习率调度。余弦退火是一种常用的学习率调度策略,它可以在训练过程中缓慢增加学习率,然后在训练过程中缓慢减小学习率,从而实现更高效的训练。

接着,代码定义了一个 OneCycleLR 学习率调度器,它根据余弦退火策略调整学习率。max_lr 参数表示最大学习率,epochs 参数表示总共有多少个训练 epoch,steps_per_epoch 参数表示每个 epoch 中有多少个迭代步骤。

最后,代码将优化器 optimizer 和学习率调度器 sched 分别赋值给模型 model

@torch.no_grad()
def evaluate(model, val_loader):
    model.eval()
    outputs = [model.validation_step(batch) for batch in val_loader]
    with torch.no_grad():
        for data,target in val_loader:
            output = model(data)
            pred = output.argmax(dim=1,keepdim=True)
    return model.validation_epoch_end(outputs),pred

def get_lr(optimizer):
    for param_group in optimizer.param_groups:
        return param_group['lr']

def fit_one_cycle(epochs, max_lr, model, train_loader, val_loader, 
                  weight_decay=0, grad_clip=None, opt_func=torch.optim.SGD):
    torch.cuda.empty_cache()
    history = []
    
    # Set up cutom optimizer with weight decay
    optimizer = opt_func(model.parameters(), max_lr, weight_decay=weight_decay)
    # Set up one-cycle learning rate scheduler
    sched = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr, epochs=epochs, 
                                                steps_per_epoch=len(train_loader))
    
    for epoch in range(epochs):

        # Training Phase 
        model.train()
        train_losses = []
        lrs = []
        print("Epoch: ", epoch+1)
        for batch in tqdm(train_loader):
            loss = model.training_step(batch)
            train_losses.append(loss)
            loss.backward()
            
            # Gradient clipping
            if grad_clip: 
                nn.utils.clip_grad_value_(model.parameters(), grad_clip)
            
            optimizer.step()
            optimizer.zero_grad()
            
            # Record & update learning rate
            lrs.append(get_lr(optimizer))
            sched.step()
        
        # Validation phase
        result,pred = evaluate(model, val_loader)
        result['train_loss'] = torch.stack(train_losses).mean().item()
        result['lrs'] = lrs
        model.epoch_end(epoch, result)
        history.append(result)
    return history
 
history = []
print(history)
#训练

model.freeze()

epochs = 10
max_lr = 0.0001
grad_clip = 0.1
weight_decay = 1e-4
opt_func = torch.optim.Adam

""" history += fit_one_cycle(epochs, max_lr, model, train_dl, valid_dl, 
                             grad_clip=grad_clip, 
                             weight_decay=weight_decay, 
                             opt_func=opt_func)
def plot_accuracies(history):
    accuracies = [x['val_acc'] for x in history]
    plt.plot(accuracies, '-x')
    plt.xlabel('epoch')
    plt.ylabel('accuracy')
    plt.title('Accuracy vs. No. of epochs')
    plt.show()
plot_accuracies(history)
torch.save(model.state_dict(), 'RES.pth')  """

3.5预测

model.load_state_dict(torch.load('RES.pth'))
r,result=evaluate(model, valid_dl)
print(result)
data_loader_iter = iter(valid_dl)
while True:
   try:
       item = next(data_loader_iter)
       # 对 item 进行处理
       image, label = item
   except StopIteration:
       break
images=image.numpy()
labels=label.numpy()

fig = plt.figure(figsize=(25,4))
for idx in np.arange(9):
    ax = fig.add_subplot(1,9, idx+1, xticks=[], yticks=[])
    ax.imshow(images[idx][0])
    ax.set_title('real:'+str(labels[idx].item())+'ped:'+str(result[idx].item()))
plt.show()

在这里插入图片描述

4.总代码

import os
import torch
import torchvision
import tarfile
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
from torchvision.datasets.utils import download_url
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader
import torchvision.transforms as tt
from torchvision.utils import make_grid
import torchvision.models as models
import matplotlib.pyplot as plt
from tqdm import tqdm
from torch.utils.data.sampler import SubsetRandomSampler
import random
 #matplotlib inline
# 下载数据集
dataset_url = "https://s3.amazonaws.com/fast-ai-imageclas/imagewoof2-160.tgz"
download_url(dataset_url, '.')

# 提取压缩文件
with tarfile.open('./imagewoof2-160.tgz', 'r:gz') as tar:
   tar.extractall(path='./data')

# 查看数据目录中的内容
data_dir = './data/imagewoof2-160'
print(os.listdir(data_dir))
classes = os.listdir(data_dir + "/train")
print(classes)

# 数据转换(归一化和数据增强)
stats = ((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
train_tfms = tt.Compose([tt.RandomCrop(160, padding=4, padding_mode='reflect'), 
                        tt.RandomHorizontalFlip(), 
                        tt.ToTensor(), 
                        tt.Normalize(*stats,inplace=True)])
valid_tfms = tt.Compose([tt.Resize([160,160]),tt.ToTensor(), tt.Normalize(*stats)])

# 创建ImageFolder对象
train_ds = ImageFolder(data_dir+'/train', train_tfms)
valid_ds = ImageFolder(data_dir+'/val', valid_tfms)
print(f'训练数据集长度 = {len(train_ds)}')
print(f'验证数据集长度 = {len(valid_ds)}')
# 计算数据集中的样本数量
num_samples = int(len(train_ds)/25)

print(num_samples)
# 创建一个随机索引
indices = list(range(num_samples))

# 打乱索引
random.shuffle(indices)

# 设置训练集的大小
train_size = int(0.8 * num_samples)

# 创建训练集和验证集的索引
train_indices = indices[:train_size]
valid_indices = indices[train_size:]

# 创建训练集和验证集的随机抽样器
train_sampler = SubsetRandomSampler(train_indices)
valid_sampler = SubsetRandomSampler(valid_indices)

# 设置批量大小
batch_size = 64

# 创建训练集和验证集的数据加载器
train_dl = DataLoader(train_ds, batch_size=32, sampler=train_sampler)
valid_dl = DataLoader(valid_ds, batch_size=32, sampler=valid_sampler)


""" # PyTorch数据加载器
# 创建数据加载器

train_dl = DataLoader(train_ds, batch_size, shuffle=True)
valid_dl = DataLoader(valid_ds, batch_size*2) """

#展示数据
def show_batch(dl):
    for images, labels in dl:
        fig, ax = plt.subplots(figsize=(12, 12))
        ax.set_xticks([]); ax.set_yticks([])
        ax.imshow(make_grid(images[:64], nrow=8, normalize=True).permute(1, 2, 0))
        break
    plt.show()
    
show_batch(train_dl)

#设置设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def get_default_device():
    """Pick GPU if available, else CPU"""
    if torch.cuda.is_available():
        return torch.device('cuda')
    else:
        return torch.device('cpu')
    
def to_device(data, device):
    """Move tensor(s) to chosen device"""
    if isinstance(data, (list,tuple)):
        return [to_device(x, device) for x in data]
    return data.to(device, non_blocking=True)

class DeviceDataLoader():
    """Wrap a dataloader to move data to a device"""
    def __init__(self, dl, device):
        self.dl = dl
        self.device = device
        
    def __iter__(self):
        """Yield a batch of data after moving it to device"""
        for b in self.dl: 
            yield to_device(b, self.device)

    def __len__(self):
        """Number of batches"""
        return len(self.dl)

train_dl = DeviceDataLoader(train_dl, device)
valid_dl = DeviceDataLoader(valid_dl, device)


#基于批量归一化的预训练 ResNet 模型的定义
def accuracy(outputs, labels):
    _, preds = torch.max(outputs, dim=1)
    return torch.tensor(torch.sum(preds == labels).item() / len(preds))

class ImageClassificationBase(nn.Module):
    def training_step(self, batch):
        images, labels = batch 
        out = self(images)                  # Generate predictions
        loss = F.cross_entropy(out, labels) # Calculate loss
        return loss
    
    def validation_step(self, batch):
        images, labels = batch 
        out = self(images)                    # Generate predictions
        loss = F.cross_entropy(out, labels)   # Calculate loss
        acc = accuracy(out, labels)           # Calculate accuracy
        return {'val_loss': loss.detach(), 'val_acc': acc}
        
    def validation_epoch_end(self, outputs):
        batch_losses = [x['val_loss'] for x in outputs]
        epoch_loss = torch.stack(batch_losses).mean()   # Combine losses
        batch_accs = [x['val_acc'] for x in outputs]
        epoch_acc = torch.stack(batch_accs).mean()      # Combine accuracies
        return {'val_loss': epoch_loss.item(), 'val_acc': epoch_acc.item()}
    
    def epoch_end(self, epoch, result):
        print("Epoch [{}], last_lr: {:.5f}, train_loss: {:.4f}, val_loss: {:.4f}, val_acc: {:.4f}".format(
            epoch, result['lrs'][-1], result['train_loss'], result['val_loss'], result['val_acc']))

class Resnet50(ImageClassificationBase):
    def __init__(self):
        super().__init__()
        # Use a pretrained model
        self.network = models.resnet50(pretrained=True)
        # Replace last layer
        num_ftrs = self.network.fc.in_features
        self.network.fc = nn.Linear(num_ftrs, 10)
    
    def forward(self, xb):
        return torch.sigmoid(self.network(xb))
    
    def freeze(self):
        # To freeze the residual layers
        for param in self.network.parameters():
            param.require_grad = False
        for param in self.network.fc.parameters():
            param.require_grad = True
    
    def unfreeze(self):
        # Unfreeze all layers
        for param in self.network.parameters():
            param.require_grad = True

model = to_device(Resnet50(), device)
print(model)

#fit函数
@torch.no_grad()
def evaluate(model, val_loader):
    model.eval()
    outputs = [model.validation_step(batch) for batch in val_loader]
    with torch.no_grad():
        for data,target in val_loader:
            output = model(data)
            pred = output.argmax(dim=1,keepdim=True)
    return model.validation_epoch_end(outputs),pred

def get_lr(optimizer):
    for param_group in optimizer.param_groups:
        return param_group['lr']

def fit_one_cycle(epochs, max_lr, model, train_loader, val_loader, 
                  weight_decay=0, grad_clip=None, opt_func=torch.optim.SGD):
    torch.cuda.empty_cache()
    history = []
    
    # Set up cutom optimizer with weight decay
    optimizer = opt_func(model.parameters(), max_lr, weight_decay=weight_decay)
    # Set up one-cycle learning rate scheduler
    sched = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr, epochs=epochs, 
                                                steps_per_epoch=len(train_loader))
    
    for epoch in range(epochs):

        # Training Phase 
        model.train()
        train_losses = []
        lrs = []
        print("Epoch: ", epoch+1)
        for batch in tqdm(train_loader):
            loss = model.training_step(batch)
            train_losses.append(loss)
            loss.backward()
            
            # Gradient clipping
            if grad_clip: 
                nn.utils.clip_grad_value_(model.parameters(), grad_clip)
            
            optimizer.step()
            optimizer.zero_grad()
            
            # Record & update learning rate
            lrs.append(get_lr(optimizer))
            sched.step()
        
        # Validation phase
        result,pred = evaluate(model, val_loader)
        result['train_loss'] = torch.stack(train_losses).mean().item()
        result['lrs'] = lrs
        model.epoch_end(epoch, result)
        history.append(result)
    return history
 
history = []
print(history)
#训练

model.freeze()

epochs = 10
max_lr = 0.0001
grad_clip = 0.1
weight_decay = 1e-4
opt_func = torch.optim.Adam

""" history += fit_one_cycle(epochs, max_lr, model, train_dl, valid_dl, 
                             grad_clip=grad_clip, 
                             weight_decay=weight_decay, 
                             opt_func=opt_func)
def plot_accuracies(history):
    accuracies = [x['val_acc'] for x in history]
    plt.plot(accuracies, '-x')
    plt.xlabel('epoch')
    plt.ylabel('accuracy')
    plt.title('Accuracy vs. No. of epochs')
    plt.show()
plot_accuracies(history)
torch.save(model.state_dict(), 'RES.pth')  """
model.load_state_dict(torch.load('RES.pth'))
r,result=evaluate(model, valid_dl)
print(result)
data_loader_iter = iter(valid_dl)
while True:
   try:
       item = next(data_loader_iter)
       # 对 item 进行处理
       image, label = item
   except StopIteration:
       break
images=image.numpy()
labels=label.numpy()

fig = plt.figure(figsize=(25,4))
for idx in np.arange(9):
    ax = fig.add_subplot(1,9, idx+1, xticks=[], yticks=[])
    ax.imshow(images[idx][0])
    ax.set_title('real:'+str(labels[idx].item())+'ped:'+str(result[idx].item()))
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/216753.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

YOLOv8改进有效涨点 | 2023 | SPD-Conv空间深度转换卷积(高效空间编码技术)

一、本文介绍 本文给大家带来的改进内容是SPD-Conv(空间深度转换卷积)技术。SPD-Conv是一种创新的空间编码技术,它通过更有效地处理图像数据来改善深度学习模型的表现。SPD-Conv的基本概念:它是一种将图像空间信息转换为深度信息…

Leetcode每日一题学习训练——Python版(从二叉搜索树到更大和树)

版本说明 当前版本号[20231204]。 版本修改说明20231204初版 目录 文章目录 版本说明目录从二叉搜索树到更大和树理解题目代码思路参考代码 原题可以点击此 1038. 从二叉搜索树到更大和树 前去练习。 从二叉搜索树到更大和树 给定一个二叉搜索树 root (BST),请…

【React设计】React企业级设计模式

Image Source : https://bugfender.com React是一个强大的JavaScript库,用于构建用户界面。其基于组件的体系结构和构建可重用组件的能力使其成为许多企业级应用程序的首选。然而,随着应用程序的规模和复杂性的增长,维护和扩展变得更加困难。…

FCRP第二题

【题目要求】 数据库中有一张地区数据统计表,但是并不规则 ,记录类似于,225100:02:3:20160725是一串代码,以:分割,第1位为地区代码,第2位为分类代码,第3位为数量,第4位为…

Linux删除了大文件为什么磁盘空间没有释放?

某天,收到监控系统的告警信息,说磁盘空间占用过高,登上服务器,使用 df -h 一看,发现磁盘占用率已经 96%了: 通过查看 /usr/local/nginx/conf/vhost/xxx.conf 找到 access_log 和 error_log 的路径&#x…

在Python中探索图像相似性方法

在一个充斥着图像的世界里,衡量和量化图像之间相似性的能力已经成为一项关键任务。无论是用于图像检索、内容推荐还是视觉搜索,图像相似性方法在现代应用中起着至关重要的作用。 幸运的是,Python提供了大量工具和库,使得开发人员和…

【深度学习】Stable Diffusion中的Hires. fix是什么?Hires. fix原理

文章目录 **Hires. fix****Extra noise**Upscalers Hires. fix https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#hires-fix 提供了一个方便的选项,可以部分地以较低分辨率呈现图像,然后将其放大,最后在高分辨率下添…

FreeRTOS调度器启动过程分析

目录 引出思考 vTaskStartScheduler()启动任务调度器 xPortStartScheduler()函数 FreeRTOS启动第一个任务 vPortSVCHandler()函数 总结 引出思考 首先想象一下如何启动第一个任务? 假设我们要启动的第一个任务是任务A,那么就需要将任务A的寄存器值…

X540t2关于手动安装intel驱动

首先去intel驱动官网下载,win10和win11驱动一样 https://www.intel.cn/content/www/cn/zh/download/18293/intel-network-adapter-driver-for-windows-10.html 然后下载下来解压 将Wired_driver_28.2_x64.exe修改成Wired_driver_28.2_x64.zip文件再解压 打开设备管…

mybatis的数据库连接池

直接看原文 原文链接:【MyBatis】 连接池技术_mybatis自带连接池-CSDN博客 本文先不说springBoot整合mybatis后的 本文讲的是没有被springBoot整合前的mybatis自己的默认的连接池 --------------------------------------------------------------------------------------…

v-on 可以监听多个方法吗?

目录 前言 详解:v-on 指令的基本概念 用法:v-on 指令监听多个方法 解析:v-on 指令的优势和局限性 优势 - **强大的事件处理**:v-on允许你处理各种DOM事件,从点击到输入等。 - **多方法监听**:可以轻…

全网最新最全的自动化测试教程:python+pytest接口自动化(9)-cookie绕过登录(保持登录状态

在编写接口自动化测试用例或其他脚本的过程中,经常会遇到需要绕过用户名/密码或验证码登录,去请求接口的情况,一是因为有时验证码会比较复杂,比如有些图形验证码,难以通过接口的方式去处理;再者&#xff0c…

【数据分享】2015-2023年我国区县逐月二手房房价数据(Excel/Shp格式)

房价是一个城市发展程度的重要体现,一个城市的房价越高通常代表这个城市越发达,对于人口的吸引力越大!因此,房价数据是我们在各项城市研究中都非常常用的数据!之前我们分享过2015-2023年我国地级市逐月房价数据&#x…

多表操作、其他字段和字段参数、django与ajax(回顾)

多表操作 1 基于对象的跨表查 子查询----》执行了两句sql,没有连表操作 2 基于双下滑线的连表查 一次查询,连表操作 3 正向和反向 放在ForeignKey,OneToOneField,ManyToManyField的-related_namebooks:双下滑线连表查询,反向…

13、pytest为失败的断言定义自己的解释

官方实例 # content of ocnftest.py from test_foocompare import Foodef pytest_assertrepr_compare(op, left, right):if isinstance(left, Foo) and isinstance(right, Foo) and op "":return["Comparing Foo instances:",f" vals:{left.val} !…

抖音集团面试挂在2面,复盘后,决定二战.....

先说下我基本情况,本科不是计算机专业,现在是学通信,然后做图像处理,可能面试官看我不是科班出身没有问太多计算机相关的问题,因为第一次找工作,字节的游戏专场又是最早开始的,就投递了&#xf…

用友NC FileUploadServlet 反序列化RCE漏洞复现

0x01 产品简介 用友 NC 是用友网络科技股份有限公司开发的一款大型企业数字化平台。 0x02 漏洞概述 用友 NC nc.file.pub.imple.FileUploadServlet 反序列化漏洞,攻击者可通过该漏洞在服务器端任意执行代码,写入后门,获取服务器权限,进而控制整个web服务器。 0x03 复现环…

什么是服务端渲染,SSR解决了什么问题

面试官:SSR解决了什么问题?有做过SSR吗?你是怎么做的? 一、是什么 Server-Side Rendering 我们称其为SSR,意为服务端渲染 指由服务侧完成页面的 HTML 结构拼接的页面处理技术,发送到浏览器,然…

OTFX欧汇提供更优质的外汇交易产品和服务

OTFX的外汇交易明智决策能力:准确捕捉外汇市场机会,实现稳定盈利 把握机遇,重要的是争取而不是等待。在金融市场中,明智的决策能力对于外汇交易成败至关重要。及时的断绝,果断的出手,才能够保证出手的成功…

【Flink】Flink核心概念简述

目录 一、Flink 简介二、Flink 组件栈1. API & Libraries 层2. runtime层3. 物理部署层 三、Flink 集群架构四、Flink基本编程模型五、Flink 的优点 一、Flink 简介 Apache Flink 的前身是柏林理工大学一个研究性项目, 在 2014 被 Apache 孵化器所接受&#xf…