掌握排序的艺术:Python中sorted()函数全面解析!

更多资料获取

📚 个人网站:ipengtao.com


1. 引言

排序在编程中是一个基本且重要的操作,而 Python 中的 sorted() 函数则为我们提供了强大的排序能力。在本篇文章中,我们将深入研究不同排序算法、sorted() 函数的灵活性,以及各种排序场景下的最佳实践。

2. 排序算法概述

冒泡排序

冒泡排序是一种简单的排序算法,通过多次遍历比较相邻元素并交换来实现排序。以下是一个冒泡排序的例子:

# 冒泡排序示例代码
def bubble_sort(arr):
    n = len(arr)
    for i in range(n):
        for j in range(0, n - i - 1):
            if arr[j] > arr[j + 1]:
                arr[j], arr[j + 1] = arr[j + 1], arr[j]
    return arr

arr = [64, 34, 25, 12, 22, 11, 90]
sorted_arr = bubble_sort(arr)
print("冒泡排序结果:", sorted_arr)

插入排序

插入排序通过构建有序序列,逐个将未排序的元素插入到已排序序列的适当位置来排序。以下是一个插入排序的例子:

# 插入排序示例代码
def insertion_sort(arr):
    for i in range(1, len(arr)):
        key = arr[i]
        j = i - 1
        while j >= 0 and key < arr[j]:
            arr[j + 1] = arr[j]
            j -= 1
        arr[j + 1] = key
    return arr

arr = [64, 34, 25, 12, 22, 11, 90]
sorted_arr = insertion_sort(arr)
print("插入排序结果:", sorted_arr)

选择排序

选择排序不断地从未排序部分找到最小元素,并将其放到已排序部分的末尾。以下是一个选择排序的例子:

# 选择排序示例代码
def selection_sort(arr):
    for i in range(len(arr)):
        min_idx = i
        for j in range(i + 1, len(arr)):
            if arr[j] < arr[min_idx]:
                min_idx = j
        arr[i], arr[min_idx] = arr[min_idx], arr[i]
    return arr

arr = [64, 34, 25, 12, 22, 11, 90]
sorted_arr = selection_sort(arr)
print("选择排序结果:", sorted_arr)

快速排序

快速排序是一种高效的排序算法,采用分治的策略,通过选定基准值将数组分割成较小和较大的两个子数组。以下是一个快速排序的例子:

# 快速排序示例代码
def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    else:
        pivot = arr[0]
        less_than_pivot = [x for x in arr[1:] if x <= pivot]
        greater_than_pivot = [x for x in arr[1:] if x > pivot]
        return quick_sort(less_than_pivot) + [pivot] + quick_sort(greater_than_pivot)

# 使用示例
arr = [64, 34, 25, 12, 22, 11, 90]
sorted_arr = quick_sort(arr)
print("快速排序结果:", sorted_arr)

在这个示例中,quick_sort() 函数递归地将数组分成小于基准值和大于基准值的两个子数组,直至每个子数组的长度小于等于1,即达到基本情形,然后将结果合并成一个有序数组。

归并排序

归并排序是一种分治算法,将原始列表分为较小的列表,直至每个列表只有一个元素,然后合并成一个有序列表。以下是一个归并排序的例子:

# 归并排序示例代码
def merge_sort(arr):
    if len(arr) > 1:
        mid = len(arr) // 2
        left_half = arr[:mid]
        right_half = arr[mid:]

        merge_sort(left_half)
        merge_sort(right_half)

        i = j = k = 0

        while i < len(left_half) and j < len(right_half):
            if left_half[i] < right_half[j]:
                arr[k] = left_half[i]
                i += 1
            else:
                arr[k] = right_half[j]
                j += 1
            k += 1

        while i < len(left_half):
            arr[k] = left_half[i]
            i += 1
            k += 1

        while j < len(right_half):
            arr[k] = right_half[j]
            j += 1
            k += 1

# 使用示例
arr = [64, 34, 25, 12, 22, 11, 90]
merge_sort(arr)
print("归并排序结果:", arr)

在这个示例中,merge_sort() 函数使用递归的方式将列表分解成较小的子列表,然后再将这些子列表合并成一个有序的列表。归并排序的时间复杂度始终为 O(n log n),保持较稳定。

3. sorted() 函数基础

sorted() 函数是 Python 中的内置函数,用于排序列表、元组和字典。以下是 sorted() 函数的基本用法:

# `sorted()` 函数基本用法
arr = [64, 34, 25, 12, 22, 11, 90]
sorted_arr = sorted(arr)
print("基本排序结果:", sorted_arr)

4. 多样化的排序方法

稳定性排序

稳定性排序能够保持相等元素之间的原始顺序,尤其在多次排序时更为重要。下面是稳定性排序的例子:

# 稳定性排序示例代码
employees = [
    {'name': 'Alice', 'age': 25},
    {'name': 'Bob', 'age': 30},
    {'name': 'Alice', 'age': 20},
    {'name': 'Charlie', 'age': 25}
]

sorted_employees = sorted(employees, key=lambda x: x['name'])
print("稳定性排序结果:", sorted_employees)

逆序排序

sorted() 函数允许进行逆序排序。下面是逆序排序的例子:

# 逆序排序示例代码
arr = [64, 34, 25, 12, 22, 11, 90]
reverse_sorted_arr = sorted(arr, reverse=True)
print("逆序排序结果:", reverse_sorted_arr)

5. 复杂对象的排序

sorted() 函数不仅可以用于数字,还可以对自定义对象进行排序,通过使用类的特殊方法(例如 __lt__, __gt__)来实现。以下是自定义对象排序的例子:

# 对自定义对象排序示例代码
class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age

    def __repr__(self):
        return f"Person(name={self.name}, age={self.age})"

persons = [Person('Alice', 25), Person('Bob', 20), Person('Charlie', 30)]
sorted_persons = sorted(persons, key=lambda x: x.age)
print("自定义对象排序结果:", sorted_persons)

6. 性能分析和最佳实践

排序算法的选择对于程序性能至关重要,我们将进行排序算法的性能比较分析并提供最佳实践建议。

排序算法性能比较

下面是不同排序算法的性能比较示例代码:

# 排序算法性能比较示例代码
import time

arr = list(range(10000, 0, -1))

start_time = time.time()
sorted_arr = sorted(arr)  # 使用内置排序函数
end_time = time.time()
print(f"内置排序函数运行时间: {end_time - start_time}秒")

start_time = time.time()
bubble_sort(arr.copy())  # 使用冒泡排序
end_time = time.time()
print(f"冒泡排序运行时间: {end_time - start_time}秒")

最佳实践

绝对,以下是一些关于排序和使用 sorted() 函数的最佳实践:

利用关键字参数 key 进行灵活排序

利用 key 参数对复杂数据结构进行排序,比如排序字典的值、按照对象的某个属性进行排序等。

# 利用 key 参数对复杂数据结构进行排序示例
# 对字典的值进行排序
dictionary = {'apple': 30, 'orange': 20, 'banana': 50, 'grapes': 10}
sorted_dict = sorted(dictionary, key=lambda x: dictionary[x])
print(sorted_dict)  # 输出按值排序的键列表

避免修改原始数据

确保排序时不会对原始数据进行修改,以免造成不可预料的影响。

# 避免修改原始数据示例
arr = [4, 3, 1, 2]
sorted_arr = sorted(arr)  # 创建一个新的已排序列表
print(sorted_arr)  # 输出已排序列表
print(arr)  # 输出原始列表,未被修改

选择合适的排序算法

根据数据规模和类型选择适当的排序算法,以保证最佳性能。

# 选择合适的排序算法示例
import random

# 对较小规模的数据使用选择排序
small_data = random.sample(range(1, 50), 10)
print("Small data:", small_data)
sorted_small_data = sorted(small_data)  # 使用内置排序
print("Sorted Small data:", sorted_small_data)

# 对较大规模的数据使用快速排序
large_data = random.sample(range(1, 100000), 10000)
print("Large data:", large_data[:10])  # 打印前10个数据,避免太多输出
sorted_large_data = sorted(large_data)  # 使用内置排序
print("Sorted Large data:", sorted_large_data[:10])  # 打印前10个排序后的数据,避免太多输出

总结

排序算法在计算机科学和编程中扮演着至关重要的角色,sorted() 函数是 Python 中最为灵活和便捷的排序工具之一。本文介绍了几种经典的排序算法,例如冒泡排序、插入排序、选择排序、快速排序和归并排序。每个算法都有其独特的优势和特点,对不同类型的数据和场景有不同的适用性。

sorted() 函数在排序过程中提供了便利性和灵活性,能够应对各种数据类型的排序需求。此外,最佳实践内容包括了使用关键字参数 key 进行定制排序、避免对原始数据进行修改、选择适当的排序算法以及了解时间复杂度和空间复杂度等。这些最佳实践能够帮助开发人员编写更加高效、清晰的代码,并有效地处理排序需求。

排序算法的选择需要根据具体情况,考虑数据规模、性能和算法稳定性等方面的因素。了解各种算法的特点和适用场景,以及sorted() 函数的应用方法,将有助于程序员在实际编码中更好地应对排序需求,提高代码效率和性能。


Python学习路线

在这里插入图片描述

更多资料获取

📚 个人网站:ipengtao.com

如果还想要领取更多更丰富的资料,可以点击文章下方名片,回复【优质资料】,即可获取 全方位学习资料包。

在这里插入图片描述
点击文章下方链接卡片,回复【优质资料】,可直接领取资料大礼包。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/216538.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【云原生-K8s】镜像漏洞安全扫描工具Trivy部署及使用

基础介绍基础描述Trivy特点 部署在线下载百度网盘下载安装 使用扫描nginx镜像扫描结果解析json格式输出 总结 基础介绍 基础描述 Trivy是一个开源的容器镜像漏洞扫描器&#xff0c;可以扫描常见的操作系统和应用程序依赖项的漏洞。它可以与Docker和Kubernetes集成&#xff0c;…

【开源】基于Vue.js的智慧社区业务综合平台

文末获取源码&#xff0c;项目编号&#xff1a; S 077 。 \color{red}{文末获取源码&#xff0c;项目编号&#xff1a;S077。} 文末获取源码&#xff0c;项目编号&#xff1a;S077。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 业务类型模块2.2 基础业务模块2.3 预…

SQL Sever 基础知识 - 数据筛选(2)

SQL Sever 基础知识 - 四、数据筛选 第3节 NULL3.1 NULL 和三值逻辑3.2 IS NULL / IS NOT NULL 第4节 AND4.1 AND 运算符简介4.2 AND 运算符示例4.2.1 一个 AND 运算符4.2.2 多个 AND 运算符4.2.3 将 AND 运算符与其他逻辑运算符一起使用 第5节 OR5.1 OR 运算符简介5.2 OR 运算…

LeetCode | 226. 翻转二叉树

LeetCode | 226. 翻转二叉树 OJ链接 不为空就翻转&#xff0c;空空就停止翻转左子树的节点给了右子树右子树的节点给了左就完成了翻转 struct TreeNode* invertTree(struct TreeNode* root) {//不为空就进行翻转if(root){//翻转struct TreeNode* tmp root->left;root->…

基于Python的6+1号码生成器

&#x1f388; 博主&#xff1a;一只程序猿子 &#x1f388; 博客主页&#xff1a;一只程序猿子 博客主页 &#x1f388; 个人介绍&#xff1a;爱好(bushi)编程&#xff01; &#x1f388; 创作不易&#xff1a;如喜欢麻烦您点个&#x1f44d;或者点个⭐&#xff01; &#x1f…

Rpg游戏地形生成

rpg游戏中的地形一般使用高度图的形式来绘制。写了几个随机生成高度图的算法。 最常见的是基于分形算法生成高度图&#xff0c;网上有很多资料&#xff0c;这里不再介绍。 一种生成断层效果高度图的算法 //!生成断层效果的高度图 void TerrainData::FillFaultSurface(float …

Vue2.0与Vue3.0的区别

一、Vue2和Vue3的数据双向绑定原理发生了改变 Vue2的双向数据绑定是利用ES5的一个API&#xff0c;Object.definePropert()对数据进行劫持 结合 发布 订阅模式的方式来实现的。通过Object.defineProperty来劫持数据的setter&#xff0c;getter&#xff0c;在数据变动时发布消息…

如何写好亚马逊listing页面?助你提高转化率!(上)

亚马逊listing页面就是商品介绍页&#xff0c;我们可以将listing分成这几个模块&#xff1a;图片、标题、五点描述、产品描述、后台关键词、Q&A、产品评论。本篇讲解如何写好图片、标题以及五点描述这三个模块。 一、图片 亚马逊详情页一般可以放入7张图片&#xff0c;1张…

三季度付费用户持续增加,知乎的“吸引力法则”是什么?

在过去的12年里&#xff0c;知乎一直是一个问答社区&#xff0c;通过“一问多答”形成了可以进行专业讨论的社区氛围&#xff0c;并累计完成了上亿次这样的专业讨论&#xff0c;同时还借助平台一问多答的形式打造了网文社区&#xff0c;依托于平台专业职场人的资源池打造了职业…

练习十一:简单卷积器的设计

简单卷积器的设计 1&#xff0c;任务目的&#xff1a;2&#xff0c;明确设计任务2.1,目前这部分代码两个文件没找到&#xff0c;见第5、6节&#xff0c;待解决中。 &#xff0c;卷积器的设计&#xff0c;RTL&#xff1a;con1.v4&#xff0c;前仿真和后仿真&#xff0c;测试信号…

Tubulysin C 微管蛋白C 205304-88-7

Tubulysin C 微管蛋白C 205304-88-7 英文名称&#xff1a;Tubulysin C 中文名称&#xff1a;微管蛋白C 化学名称&#xff1a;(2S,4R)-4-[[2-[(1R,3R)-1-乙酰氧基-4-甲基-3-[[(2S,3S)-3-甲基-2-[[(2R)-1 -甲基哌啶-2-羰基]氨基]戊酰基]-(丙酰氧基甲基)氨基]戊基]-1,3-噻唑-4-羰基…

【南昌大学主办、往届均已实现EI、Scopus双检索】第三届电子信息工程与数据处理国际学术会议(EIEDP 2024)

第三届电子信息工程与数据处理国际学术会议&#xff08;EIEDP 2024&#xff09; 2024 3rd International Conference on Electronic Information Engineering and Data Processing 第三届电子信息工程与数据处理国际学术会议&#xff08;EIEDP 2024&#xff09;将于2024年3月1…

【开发问题解决方法记录】03.dian

登录提示 ERR-1002 在应用程序 "304" 中未找到项 "ROLE_ID" 的项 ID。 一开始找错方向了&#xff0c;以为是代码错误&#xff0c;但是后来在蒋老师的提醒下在共享组件-应用程序项 中发现设的项不是ROLE_ID而是ROLEID&#xff0c;怪不得找不到ORZ 解决方法…

夜莺专业版网络设备功能介绍

网络设备采集简介 网络设备的问题通常会产生较大范围的影响&#xff0c;因此采集监控网络设备是一项常见的任务。不同公司在实施网络设备采集时可能采用不同的方案&#xff0c;主要有三类&#xff1a; SNMP&#xff08;Simple Network Management Protocol&#xff09;&#x…

如何使用gdb调试fork程序

代码示例 #include<stdio.h> #include<unistd.h> #include<sys/types.h> #include<stdlib.h> #include<sys/wait.h>int main(int argc, const char* argv[]) {pid_t pid -1;int status 0;int ret -1; // 创建子进程。若创建成功&#xff0c;…

前端项目中CDN的一些问题【性能优化篇】

1. CDN的概念 CDN&#xff08;Content Delivery NetWork&#xff0c;内容分发网络&#xff09;&#xff0c;是指利用最靠近每位用户的服务区&#xff0c;更快的将资源发送给用户。 提高用户的访问速度减轻服务器压力提高网站的稳定性和安全性 2. CDN的作用 CDN一般用来托管…

java--抽象类的常见应用场景:模板方法设计模式

1.模板方法设计模式解决了什么问题&#xff1f; ①解决方法中存在重复代码的问题。 2.模板方法设计模式的写法 1、定义一个抽象类。 2、在里面定义2个方法 ①一个是模板方法&#xff1a;把相同代码放里面去。 ②一个是抽象方法&#xff1a;具体实现交给子类完成。 分析&…

【有机化学(药学类)】醛和酮3

第一题 思考 格氏试剂与不饱和醛酮的亲核加成反应&#xff0c;主要发生1,2加成&#xff08;注意&#xff1a;氧原子算是1&#xff09; 第二题 思考 叶立德反应&#xff0c;看到磷原子就应该想到这个&#xff01; 第三题 思考 涉及到两个反应&#xff1a; 亲核加成反应&…

操作系统·设备管理

I/O系统是计算机系统的重要组成部分&#xff0c;是OS中最复杂且与硬件密切相关的部分 I/O系统的基本任务是完成用户提出的I/O请求&#xff0c;提高I/O速率以及改善I/O设备的利用率&#xff0c;方便高层进程对IO设备的使用 I/O系统包括用于实现信息输入、输出和存储功能的设备和…

使用Pytorch从零开始实现CLIP

生成式建模知识回顾: [1] 生成式建模概述 [2] Transformer I&#xff0c;Transformer II [3] 变分自编码器 [4] 生成对抗网络&#xff0c;高级生成对抗网络 I&#xff0c;高级生成对抗网络 II [5] 自回归模型 [6] 归一化流模型 [7] 基于能量的模型 [8] 扩散模型 I, 扩散模型 II…