Flink核心概念

并行度

当要处理的数据量非常大时,我们可以把一个算子操作,“复制”多份到多个节点,数据来了之后就可以到其中任意一个执行。这样一来,一个算子任务就被拆分成了多个并行的“子任务”(subtasks),再将它们分发到不同节点,就真正实现了并行计算。
在Flink执行过程中,每一个算子(operator)可以包含一个或多个子任务(operator subtask),这些子任务在不同的线程、不同的物理机或不同的容器中完全独立地执行。
一个特定算子的子任务(subtask)的个数被称之为其并行度(parallelism)。这样,包含并行子任务的数据流,就是并行数据流,它需要多个分区(stream partition)来分配并行任务。一般情况下,一个流程序的并行度,可以认为就是其所有算子中最大的并行度。一个程序中,不同的算子可能具有不同的并行度。
例如:如下图所示,当前数据流中有source、map、window、sink四个算子,其中sink算子的并行度为1,其他算子的并行度都为2。所以这段流处理程序的并行度就是2。
在这里插入图片描述

算子链

一个数据流在算子之间传输数据的形式可以是一对一(one-to-one)的直通(forwarding)模式,也可以是打乱的重分区(redistributing)模式,具体是哪一种形式,取决于算子的种类。
(1)一对一(One-to-one,forwarding)
这种模式下,数据流维护着分区以及元素的顺序。比如图中的source和map算子,source算子读取数据之后,可以直接发送给map算子做处理,它们之间不需要重新分区,也不需要调整数据的顺序。这就意味着map 算子的子任务,看到的元素个数和顺序跟source 算子的子任务产生的完全一样,保证着“一对一”的关系。map、filter、flatMap等算子都是这种one-to-one的对应关系。这种关系类似于Spark中的窄依赖。
(2)重分区(Redistributing)
在这种模式下,数据流的分区会发生改变。比如图中的map和后面的keyBy/window算子之间,以及keyBy/window算子和Sink算子之间,都是这样的关系。
每一个算子的子任务,会根据数据传输的策略,把数据发送到不同的下游目标任务。这些传输方式都会引起重分区的过程,这一过程类似于Spark中的shuffle。
在Flink中,并行度相同的一对一(one to one)算子操作,可以直接链接在一起形成一个“大”的任务(task),这样原来的算子就成为了真正任务里的一部分,如下图所示。每个task会被一个线程执行。这样的技术被称为“算子链”(Operator Chain)。

合并算子链

在这里插入图片描述

上图中Source和map之间满足了算子链的要求,所以可以直接合并在一起,形成了一个任务;因为并行度为2,所以合并后的任务也有两个并行子任务。这样,这个数据流图所表示的作业最终会有5个任务,由5个线程并行执行。
将算子链接成task是非常有效的优化:可以减少线程之间的切换和基于缓存区的数据交换,在减少时延的同时提升吞吐量。

任务槽(task slots)

Flink中每一个TaskManager都是一个JVM进程,它可以启动多个独立的线程,来并行执行多个子任务(subtask)。
很显然,TaskManager的计算资源是有限的,并行的任务越多,每个线程的资源就会越少。那一个TaskManager到底能并行处理多少个任务呢?为了控制并发量,我们需要在TaskManager上对每个任务运行所占用的资源做出明确的划分,这就是所谓的任务槽(task slots)。
每个任务槽(task slot)其实表示了TaskManager拥有计算资源的一个固定大小的子集。这些资源就是用来独立执行一个子任务的。
在这里插入图片描述

任务槽共享

默认情况下,Flink是允许子任务共享slot的。如果我们保持sink任务并行度为1不变,而作业提交时设置全局并行度为6,那么前两个任务节点就会各自有6个并行子任务,整个流处理程序则有13个子任务。如上图所示,只要属于同一个作业,那么对于不同任务节点(算子)的并行子任务,就可以放到同一个slot上执行。所以对于第一个任务节点source→map,它的6个并行子任务必须分到不同的slot上,而第二个任务节点keyBy/window/apply的并行子任务却可以和第一个任务节点共享slot。
当我们将资源密集型和非密集型的任务同时放到一个slot中,它们就可以自行分配对资源占用的比例,从而保证最重的活平均分配给所有的TaskManager。
slot共享另一个好处就是允许我们保存完整的作业管道。这样一来,即使某个TaskManager出现故障宕机,其他节点也可以完全不受影响,作业的任务可以继续执行。
在这里插入图片描述

任务槽和并行度的关系

任务槽和并行度都跟程序的并行执行有关,但两者是完全不同的概念。简单来说任务槽是静态的概念,是指TaskManager具有的并发执行能力,可以通过参数taskmanager.numberOfTaskSlots进行配置;而并行度是动态概念,也就是TaskManager运行程序时实际使用的并发能力,可以通过参数parallelism.default进行配置。
举例说明:假设一共有3个TaskManager,每一个TaskManager中的slot数量设置为3个,那么一共有9个task slot,表示集群最多能并行执行9个同一算子的子任务。
而我们定义word count程序的处理操作是四个转换算子:
source→ flatmap→ reduce→ sink
当所有算子并行度相同时,容易看出source和flatmap可以合并算子链,于是最终有三个任务节点。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

StandAlone模式下作业提交流程

在这里插入图片描述

Yarn应用模式作业提交流程

在这里插入图片描述

逻辑流图-作业流图-执行流图

1)逻辑流图(StreamGraph)
这是根据用户通过 DataStream API编写的代码生成的最初的DAG图,用来表示程序的拓扑结构。这一步一般在客户端完成。
2)作业图(JobGraph)
StreamGraph经过优化后生成的就是作业图(JobGraph),这是提交给 JobManager 的数据结构,确定了当前作业中所有任务的划分。主要的优化为:将多个符合条件的节点链接在一起合并成一个任务节点,形成算子链,这样可以减少数据交换的消耗。JobGraph一般也是在客户端生成的,在作业提交时传递给JobMaster。
我们提交作业之后,打开Flink自带的Web UI,点击作业就能看到对应的作业图。
3)执行图(ExecutionGraph)
JobMaster收到JobGraph后,会根据它来生成执行图(ExecutionGraph)。ExecutionGraph是JobGraph的并行化版本,是调度层最核心的数据结构。与JobGraph最大的区别就是按照并行度对并行子任务进行了拆分,并明确了任务间数据传输的方式。
4)物理图(Physical Graph)
JobMaster生成执行图后,会将它分发给TaskManager;各个TaskManager会根据执行图部署任务,最终的物理执行过程也会形成一张“图”,一般就叫作物理图(Physical Graph)。这只是具体执行层面的图,并不是一个具体的数据结构。
物理图主要就是在执行图的基础上,进一步确定数据存放的位置和收发的具体方式。有了物理图,TaskManager就可以对传递来的数据进行处理计算了。

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/216174.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

国标GB28181视频监控EasyCVR内网环境部署无法启动怎么办?

安防视频监控系统EasyCVR平台可拓展性强、视频能力灵活、部署轻快,可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等,以及支持厂家私有协议与SDK接入,包括海康Ehome、海大宇等设备的SDK等,能对外分发RTMP、RTSP、HTTP-FLV、…

U-Shape Transformer for Underwater Image Enhancement(用于水下图像增强的U型Transformer)总结

背景 现有的水下数据集或多或少存在图像数量少、水下场景少、甚至不是真实场景等缺点,限制了数据驱动的水下图像增强方法的性能。此外,水下图像在不同颜色通道和空间区域的衰减不一致也没有统一的框架。 贡献 1)提出了一种处理 UIE 任务的…

盘点2023年有哪些办公的效率工具

大家在使用Office时,会经常遇到一些比较繁杂的场景,比如设置段落格式,设置对齐方式,公式计算、文章排版等。使用工具能帮助我们轻松提高效率完成想要的效果,今天给大家介绍几款超实用的Office插件,不分分后…

uniapp 云打包 生成安卓证书文件

现在使用uniapp来开发小程序,H5,APP越来越多了,目前开发了一款APP,使用的也是uniapp。在此记录下用uniapp开发app云打包时约到的一些问题吧。 前因是我司安卓同学休产假,像云打包时需要的证书文件只能自己动手来搞。看…

国标GB28181安防监控平台EasyCVR录像时间轴优化步骤

视频云存储/安防监控EasyCVR视频汇聚平台基于云边端智能协同,支持海量视频的轻量化接入与汇聚、转码与处理、全网智能分发、视频集中存储等。音视频流媒体视频平台EasyCVR拓展性强,视频能力丰富,具体可实现视频监控直播、视频轮播、视频录像、…

SQL自学通之表达式条件语句与运算

目录 一、目标 二、表达式条件语句 1、表达式: 2、条件 2.1、WHERE 子句 三、运算 1、数值型运算: 1.1、加法() 1.2、减法 (-) 1.3、除法(/) 1.4、乘法 (*) 1.5、取模 (%) 优先级别…

第1章 理解知识图谱:知识图谱现状、知识图谱应用场景(二)

💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢…

GPT市场将取代插件商店 openAI已经关闭plugins申请,全部集成到GPTs(Actions)来连接现实世界,可以与物理世界互动了。

Actions使用了plugins的许多核心思想,也增加了新的特性。 ChatGPT的"Actions"与"Plugins"是OpenAI在GPT模型中引入的两种不同的功能扩展机制。这两种机制的目的是增强模型的功能,使其能够处理更多样化的任务和请求。下面是对两者的比…

在OSPF中使用基本ACL过滤路由信息示例

1、ACL的基本原理。 ACL由一系列规则组成,通过将报文与ACL规则进行匹配,设备可以过滤出特定的报文。设备支持软件ACL和硬件ACL两种实现方式。 2、ACL的组成。 ACL名称:通过名称来标识ACL,就像用域名代替IP地址一样,更…

LeetCode 每日一题 Day 3||深度优先搜索(DFS)

1038. 从二叉搜索树到更大和树 给定一个二叉搜索树 root (BST),请将它的每个节点的值替换成树中大于或者等于该节点值的所有节点值之和。 提醒一下, 二叉搜索树 满足下列约束条件: 节点的左子树仅包含键 小于 节点键的节点。节点的右子树仅…

ffmpeg编译支持AVS3编解码

libuavs3d ffmpeg的官方源码中已经支持了libuavs3d解码器的接口(libavcodec/libuavs3d.c中定义),因此如果需要编译ffmpeg支持libuavs3d解码器,只需要安装libuavs3d.so以及开启ffmpeg的编译选项即可。 安装libuavs3d解码器 #代码仓…

ssm党务政务服务热线平台源码和论文答辩PPT

摘要 首先,论文一开始便是清楚的论述了系统的研究内容。其次,剖析系统需求分析,弄明白“做什么”,分析包括业务分析和业务流程的分析以及用例分析,更进一步明确系统的需求。然后在明白了系统的需求基础上需要进一步地设计系统,主要包罗软件架构模式、整体功能模块、数据库设计…

生命周期模型构建方法与分析及实际案例应用

生命周期分析 (Life Cycle Analysis, LCA) 是评价一个产品系统生命周期整个阶段——从原材料的提取和加工,到产品生产、包装、市场营销、使用、再使用和产品维护,直至再循环和最终废物处置——的环境影响的工具。这种方法被认为是一种“从摇篮到坟墓”的…

MES管理系统与MOM系统分别有什么作用

随着科技的不断进步和全球化的竞争加剧,制造业正面临着前所未有的挑战和机遇。为了更好地适应市场需求,提高生产效率和质量,制造企业纷纷引进各种信息化管理系统。其中,MES管理系统和MOM系统是两种重要的解决方案。本文将详细探讨…

js中继承的方法

前言: 本人刚写了一篇原型链的封装继承多态,用家有儿女做的demo。其实我个人感觉封装和多态都容易去理解与实现。关键在于继承,js的才是比较难的,也容易让人混乱,至少我是因为继承头大过\(^o^)/~ js中有很多方法可以实现继承,这篇文章主要对继承的方法进行学习与测试。 这里…

c++ 三目运算符在类中的使用

简介 在类比较方面&#xff0c;三目运算符可以用于重载比较运算符。 代码示例1 #include <iostream> #include <cstring>class Person { public:Person(const char* name, int age) : m_age(age) {m_name new char[strlen(name) 1];strcpy(m_name, name);}~Pe…

LeetCode - 110. 平衡二叉树(C语言,二叉树,配图,简单)

根据题意&#xff0c;我们只需要比较当前节点的左右子树高度差是否小于1&#xff0c;利用分治法&#xff0c;只需要满足&#xff1a; 1. 根节点的左右子树的高度差小于1。 2. 根节点左右子树的满足高度差小于1&#xff0c;在往下走&#xff0c;判断左子树根节点的左右子树是否满…

软件设计之原型模式

原型模式是从一个对象再创建另一个可定制的对象&#xff0c;而且不需要知道任何创建的细节。拷贝分浅拷贝和深拷贝。浅拷贝无法拷贝引用对象。在面试的时候&#xff0c;我们会投多家公司&#xff0c;根据岗位的不同我们会适当调整。使用原型模式可以快速达到需求&#xff0c;下…

自动化测试的4大注意事项

自动化测试能够提高测试效率、覆盖率&#xff0c;降低测试成本和工作量&#xff0c;是软件开发中不可或缺的一部分。但前提是要确保自动化测试的有效性和可靠性&#xff0c;否则无效或错误的自动化测试&#xff0c;往往会对项目造成负面影响&#xff0c;如维护成本高、假阳性和…