初识Java 18-6 泛型

目录

潜在类型机制

支持潜在类型机制的语言

Python的潜在类型机制

C++的潜在类型机制

Java中的直接潜在类型机制

潜在类型机制的替代方案

反射

将方法应用于序列中的每个元素

Java 8的潜在类型机制(间接实现)

潜在类型机制的使用例(Suppliers)

总结


本笔记参考自: 《On Java 中文版》


潜在类型机制

        通过泛型,我们应该可以向“将代码写得更通用一点”这一理念更进一步。特别是在编写简单的Java泛型时,泛型可以在不了解具体类型的情况下执行方法。然而,随着对Java泛型的了解逐渐深入,类型擦除无疑使泛型的作用打了折扣,并限制了“泛型”这一概念。

        一些语言会提供潜在类型机制(又称结构化类型机制),它还有一个更有意思的名称:鸭子类型机制。比方说,“如果某件事物走路像鸭子,说话也像鸭子,那么就可以把它看做鸭子”。

    与泛型不同,潜在类型机制只对方法本身有所要求,而不需要实现特别的类或接口。

        潜在类型机制可以超越类的层次结构,调用不属于某个公共接口的方法。

支持潜在类型机制的语言

        有许多语言支持潜在类型机制,例如Python、C++和Go等。

Python的潜在类型机制

        先看看Python中的潜在类型机制:

【例子:Python中的潜在类型机制】

class Dog:
    def speak(self):
        print("汪!")
    def sit(self):
        print("坐着")
    def reproduce(self):
        pass
    
class Robot:
    def speak(self):
        print("锵!")
    def sit(self):
        print("咔")
    def oilChange(self):
        pass
    
def perform(anything):
    anything.speak()
    anything.sit()
    
a = Dog()
b = Robot()
perform(a)
perform(b)

        程序执行的结果是:

        在perform(anything)中并不包含任何关于anything的类型信息,anything只是一个标识符。在后台,anything相当于一个被隐藏的接口,它包含了perform()要求的操作。但我们无需显式地表明它,因为它是潜在的。

        而如果向perform()传入不支持操作的对象,就会报错:

----------

C++的潜在类型机制

        同样可以用C++来实现上面的例子:

【例子:C++中的潜在类型机制】

#include<iostream>
using namespace std;

class Dog {
public:
    void speak() {
        cout << "汪!" << endl;
    }

    void sit() {
        cout << "坐着" << endl;
    }
};

class Robot {
public:
    void speak() {
        cout << "锵!" << endl;
    }

    void sit() {
        cout << "咔" << endl;
    }

    void oilChange() {}
};

template<class T> void perform(T anything) {
    anything.speak();
    anything.sit();
}

int main() {
    Dog d;
    Robot r;
    perform(d);
    perform(r);
}

        程序执行的结果相同:

        若试图传入错误的类型,编译器也会报错。不同与Python,C++会在运行时抛出错误(尽管C++的错误信息出了名的冗长)。但这两门语言都保证了类型不会错用。

----------

        也可以使用Go实现这个例子:

【例子:Go中的潜在类型机制】

package main
import "fmt"

type Dog struct{}
func (this Dog) speak() {
	fmt.Printf("汪!\n")
}
func (this Dog) sit(){
	fmt.Printf("坐着\n")
}
func (this Dog) reproduce(){
}

type Robot struct{}
func (this Robot) speak() {
	fmt.Printf("锵!\n")
}
func (this Robot) sit(){
	fmt.Printf("咔\n")
}
func (this Robot) oilChange(){
}

func perform(speaker interface {speak(); sit()}){
	speaker.speak()
	speaker.sit()
}

func main(){
	perform(Dog{})
	perform(Robot{})
}

        程序会得到相同的结果:


Java中的直接潜在类型机制

        Java的泛型加入得较晚,因此没有支持潜在类型机制。因此,若要在Java中实现上面所述的效果,通常会需要使用接口(并且使用边界):

【例子:通过接口模拟潜在类型机制】

import reflection.pets.Dog;

class PerformingDog extends Dog implements Performs {
    @Override
    public void speak() {
        System.out.println("汪!");
    }

    @Override
    public void sit() {
        System.out.println("坐下");
    }

    public void reproduce() {
    }
}

class Robot implements Performs {
    @Override
    public void speak() {
        System.out.println("锵!");
    }

    @Override
    public void sit() {
        System.out.println("咔");
    }

    public void oilChange() {
    }
}

class Communicate {
    // 通过边界,调用接口的方法:
    public static <T extends Performs>
    void perform(T performer) {
        performer.speak();
        performer.sit();
    }
}

public class DogsAndRobots {
    public static void main(String[] args) {
        Communicate.perform(new PerformingDog());
        Communicate.perform(new Robot());
    }
}

        程序执行的结果是:

        然而,仔细考虑这种做法会发现,Communicate.perform()并不需要使用到泛型,它可以直接使用Performs接口:

class Communicate {
    public static void perform(Performs performer) {
        performer.speak();
        performer.sit();
    }
}

说到底,无论是PerformingDog还是Robot都已经强制实现了Performs接口。

潜在类型机制的替代方案

        尽管Java并没有(直接)支持潜在类型机制,但我们依旧可以想办法创建出真正意义上的泛型代码,实现方法的跨层次应用。

反射

        一个方案是使用反射:

【例子:使用反射创建泛型代码】

import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;

// 这个类没有实现Perform接口:
class Mime {
    public void walkAgainstTheWind() {
    }

    public void sit() {
        System.out.println("假装坐着");
    }

    public void pushInvisibleWalls() {
    }

    @Override
    public String toString() {
        return "哑剧";
    }
}

class SmartDog {
    public void speak() {
        System.out.println("汪!");
    }

    public void sit() {
        System.out.println("坐下");
    }

    public void reproduce() {
    }
}

class CommunicateReflectively {
    public static void perform(Object speaker) {
        Class<?> spkr = speaker.getClass();
        try {
            try {
                Method speak = spkr.getMethod("speak");
                speak.invoke(speaker);
            } catch (NoSuchMethodException e) {
                System.out.println(speaker + "没法说话");
            }

            try {
                Method sit = spkr.getMethod("sit");
                sit.invoke(speaker);
            } catch (NoSuchMethodException e) {
                System.out.println(speaker + "无法坐下");
            }
        } catch (SecurityException |
                 IllegalAccessException |
                 IllegalArgumentException |
                 InvocationTargetException e) {
            throw new RuntimeException(speaker.toString(), e);
        }
    }
}

public class LatentReflection {
    public static void main(String[] args) {
        CommunicateReflectively.perform(new SmartDog());
        CommunicateReflectively.perform(new Robot());
        CommunicateReflectively.perform(new Mime());
    }
}

        程序执行的结果是:

        在这里,SmartDogRobotMime之间没有任何的直接联系,我们直接通过反射动态调用speak()sit()


将方法应用于序列中的每个元素

        还可以进一步地开发反射。假设我们需要为一个序列中的每个元素应用方法,只使用接口仍是不够的,因此我们可以这样做:

【例子:将一个方法应用于序列】

import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;

public class Apply {
    public static <T, S extends Iterable<T>>
    void apply(S seq, Method f, Object... args) {
        try {
            for (T t : seq)
                f.invoke(t, args);
        } catch (IllegalAccessException |
                 IllegalArgumentException |
                 InvocationTargetException e) {
            throw new RuntimeException(e); // 可能会因为不正确的使用该方法导致异常
        }
    }
}

        apply()方法可以接受任意数量的序列元素,并将方法f()应用于所有元素。这种做法有一个好处,f.invoke()可以接受任意长度的序列,因此可以认为apply()也可以做到这点。

    除此之外,apply()方法使用了for-in语法。 这表示着S可以是任何实现了Iterable接口的类。

        接下来就对apply()方法进行测试:

【例子:apply()方法的使用例】

        首先创建一个简单的继承结构,这个结构包含一个父类Shape和一个子类Square

===父类Shape

public class Shape {
    private static long counter = 0;
    private final long id = counter++;

    @Override
    public String toString() {
        return getClass().getSimpleName() + " " + id;
    }

    public void rotate() {
        System.out.println(this + " rotate");
    }

    public void resize(int newSize) {
        System.out.println(this + " resize " + newSize);
    }
}

==子类Square

public class Square extends Shape {}

        接下来的就是测试类ApplyTest

===ApplyTest

import onjava.Suppliers;

import java.util.ArrayList;
import java.util.List;

public class ApplyTest {
    public static void main(String[] args)
            throws Exception {
        List<Shape> shapes =
                Suppliers.create(ArrayList::new, Shape::new, 3);
        Apply.apply(shapes,
                Shape.class.getMethod("rotate"));
        Apply.apply(shapes,
                Shape.class.getMethod("resize", int.class), 7);

        System.out.println();
        List<Square> squares =
                Suppliers.create(ArrayList::new, Square::new, 3);
        Apply.apply(squares,
                Shape.class.getMethod("rotate"));
        Apply.apply(squares,
                Shape.class.getMethod("resize", int.class), 7);

        System.out.println();
        Apply.apply(new FilledList<>(Shape::new, 3),
                Shape.class.getMethod("rotate"));
        Apply.apply(new FilledList<>(Square::new, 3),
                Shape.class.getMethod("rotate"));
    }
}

        程序执行的结果是:

        首先解释Suppliers.create(),看如下代码:

这行代码等价于,将Shape类的构造器作为生成器,生成3个对象,并将结果放入一个ArrayList对象中。

        尽管反射可以使代码看起来很优雅,但要注意,反射的运行速度通常会慢于非反射的实现。究其原因,反射在运行时处理了太多东西。尽管我们不应该只因为这个理由放弃使用反射,但这无疑是我们必须考虑的一点。

        现在考虑Java 8加入的函数式方式,下面的例子通过它重写ApplyTest

【例子:使用函数式方式重写ApplyTest

import java.util.stream.Stream;

public class ApplyFunctional {
    public static void main(String[] args) {
        Stream.of(Stream.generate(Shape::new).limit(2),
                        Stream.generate(Square::new).limit(2))
                .flatMap(c -> c) // 将所有元素扁平化,合成一条流
                .peek(Shape::rotate)
                .forEach(s -> s.resize(7));

        System.out.println();
        new FilledList<>(Shape::new, 2)
                .forEach(Shape::rotate);
        new FilledList<>(Square::new, 2)
                .forEach(Shape::rotate);
    }
}

        程序执行的结果是:

        这种重写方式已经抛弃了Apply.apply()了。

        这么做的好处是,它更加简洁、可读性高并且不会抛出异常。因此现在可以这么说,我们只需要在某些只能使用反射来解决的场景中使用反射就好了。

Java 8的潜在类型机制(间接实现)

        Java 8带来的未绑定方法引用可以在某种程度上实现潜在类型机制。

【例子:使用方法引用实现潜在类型机制】

import reflection.pets.Dog;

import java.util.function.Consumer;

class PerformingDogA extends Dog {
    public void speak() {
        System.out.println("汪!");
    }

    public void sit() {
        System.out.println("坐下");
    }

    public void reproduce() {
    }
}

class RobotA {
    public void speak() {
        System.out.println("锵!");
    }

    public void sit() {
        System.out.println("咔");
    }

    public void oilChange() {
    }
}

class CommunicateA {
    public static <P> void perform(
            P performer, Consumer<P> action1, Consumer<P> action2) {
        action1.accept(performer);
        action2.accept(performer);
    }
}

public class DogsAndRobotMethodReferences {
    public static void main(String[] args) {
        CommunicateA.perform(new PerformingDogA(),
                PerformingDogA::speak, PerformingDogA::sit);
        CommunicateA.perform(new RobotA(),
                RobotA::speak, RobotA::sit);
        CommunicateA.perform(new Mime(),
                Mime::walkAgainstTheWind, Mime::pushInvisibleWalls);
    }
}

        程序执行结果是:

        因为CommunicateA.perform()没有对P做出限制,因此它可以是任何类型。perform()只要求提供可供Consumer<P>使用的方法。因此我们可以向其中传入任何与其签名一致的方法

    然而,和真正的潜在类型机制相比,这种做法需要我们显式地提供perform()会用到的方法引用。

        但这种方式也有更好的一点,它其实不会对传入其中的方法名做出要求。在这个意义上,这种方法要更加通用。

潜在类型机制的使用例(Suppliers)

        现在可以通过潜在类型机制创建Suppliers(这个类在之前的笔记中也曾出现)。这个类的方法都用于填充集合:

【例子:潜在类型机制的使用例】

import java.util.Collection;
import java.util.function.BiConsumer;
import java.util.function.Supplier;
import java.util.stream.Stream;

public class Suppliers {
    // 根据factory创建一个新的集合,并且填充它:
    public static <T, C extends Collection<T>> C
    create(Supplier<C> factory, Supplier<T> gen, int n) {
        return Stream.generate(gen)
                .limit(n)
                .collect(factory, C::add, C::addAll);
    }

    // 填充已存在的集合coll:
    public static <T, C extends Collection<T>>
    C fill(C coll, Supplier<T> gen, int n) {
        Stream.generate(gen)
                .limit(n)
                .forEach(coll::add);
        return coll;
    }

    // 使用到未绑定方法引用adder,可以生成更加通用的方法:
    public static <H, A> H fill(
            H holder, BiConsumer<H, A> adder,
            Supplier<A> gen, int n) {
        Stream.generate(gen)
                .limit(n)
                .forEach(a -> adder.accept(holder, a));
        return holder;
    }
}

        在第一个fill()方法中,我们返回了coll(即传入的容器的类型信息),这样就能保证不会丢失类型信息了。

        第二个fill()方法使用了未绑定的方法引用adder。通过adder.accept(),我们可以将操作a应用于对象holder

        接下来可以尝试使用Suppliers了。

【例子:使用Suppliers

import onjava.Suppliers;

import java.util.ArrayList;
import java.util.List;

class Customer {
    private static long counter = 1;
    private final long id = counter++;

    @Override
    public String toString() {
        return "Customer " + id;
    }
}

class Teller {
    private static long counter = 1;
    private final long id = counter++;

    @Override
    public String toString() {
        return "Teller " + id;
    }
}

class Bank {
    private List<BankTeller> tellers =
            new ArrayList<>();

    public void put(BankTeller bt) {
        tellers.add(bt);
    }
}

public class BankTeller {
    public static void serve(Teller t, Customer c) {
        System.out.println(t + " 服务于 " + c);
    }

    public static void main(String[] args) {
        // 使用create():
        RandomList<Teller> tellers =
                Suppliers.create(
                        RandomList::new, Teller::new, 4);

        // 演示第一个fill():
        List<Customer> customers = Suppliers.fill(
                new ArrayList<>(), Customer::new, 12);
        customers.forEach(c ->
                serve(tellers.select(), c));

        // 演示潜在类型机制:
        Bank bank = Suppliers.fill(
                new Bank(), Bank::put, BankTeller::new, 3);
        // 或使用第二个fill():
        List<Customer> customers2 = Suppliers.fill(
                new ArrayList<>(), List::add, Customer::new, 12);
    }
}

        程序执行的结果是:

        注意第二个fill()的两个使用,我们不仅可以将有所关联的Bank类型,还可以将其用于List

总结

        尽管Java中加入的泛型存在着一些问题,但在此之前我们需要注意一点:无论一门语言多么强大,都有可能被用来编写一个无比糟糕的程序。泛型常常被用于集合之类的场景,但除此之外,泛型还能做到什么?

        泛型的概念应该就像它的名字一样,追求的是一种更加“泛型(泛化)”的代码,使一种代码能够适应更多的场景。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/213063.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

条款2:不要滥用宏

文章目录 优先选择编译器而不是预编译器两种特殊情况使用宏替代函数调用总结 优先选择编译器而不是预编译器 假设我们预定义了一个宏#define ASPECT_RATIO 1.653&#xff0c;当我们的程序在这个地方出现错误的时候。可能会出现以下的问题&#xff1a; 符号名称ASPECT_RATIO可能…

MQTT客户端、代理(broker)和连接建立

在前篇文章&#xff08;http://t.csdnimg.cn/IamPz&#xff09;中&#xff0c;介绍了发布/订阅架构和MQTT如何据此交换信息&#xff0c;其中的关键概念是&#xff1a; 发布/订阅架构触耦了负责发布信息的客户端&#xff08;发布者&#xff09;和负责接收信息的客户端&#xff…

C语言-联合和枚举

------------------------------------ --------------- ------ 最慢的步伐不是跬步&#xff0c;而是徘徊&#xff1b; 最快的脚步不是冲刺&#xff0c;而是坚持。 今天来到我们的联合和枚举类型的讲解&#xff1a; 目录 联合体类型 联合体类型的声明 联合体类型的特点 …

Wireshark抓包分析RTMP协议时,出现Unknown问题

进行rtmp推流时&#xff0c;使用wireshark抓包&#xff0c;发现部分包显示Unknown 解决方法&#xff1a; 编辑 -> 首选项 -> Protocols -> RTMPT&#xff0c;这里Maximum packet size默认是32768 将该值调大&#xff0c;比如调成1048576&#xff0c;即可解决该问题。…

ChatGPT 的 18 种玩法,你还不会用吗?

你确定&#xff0c;你会使用 ChatGPT 了吗&#xff1f; 今天给大家整理了 18 种 ChatGPT 的用法&#xff0c;看看有哪些方法是你能得上的。 用之前我们可以打开R5Ai平台&#xff0c;可以免费使用目前所有的大模型 地址&#xff1a;R5Ai.com 语法更正 用途&#xff1a;文章…

改进LiteOS中物理内存分配算法(详细实验步骤+相关源码解读)

一、实验要求 优化TLSF算法&#xff0c;将Best-fit策略优化为Good-fit策略&#xff0c;进一步降低时间复杂度至O(1)。 优化思路&#xff1a; 1.初始化时预先为每个索引中的内存块挂上若干空闲块&#xff0c;在实际分配时避免分割&#xff08;split&#xff09;操作&#xff…

[原创]C++98升级到C++20的复习旅途-从汇编及逆向角度去分析“constexpr“关键字

[简介] 常用网名: 猪头三 出生日期: 1981.XX.XXQQ: 643439947 个人网站: 80x86汇编小站 https://www.x86asm.org 编程生涯: 2001年~至今[共22年] 职业生涯: 20年 开发语言: C/C、80x86ASM、PHP、Perl、Objective-C、Object Pascal、C#、Python 开发工具: Visual Studio、Delphi…

AtCoder Beginner Contest 331 题解 A-E

目录 A - TomorrowB - Buy One Carton of MilkC - Sum of Numbers Greater Than MeD - Tile PatternE - Set Meal A - Tomorrow 原题链接 题目描述 已知一年有M个月D天&#xff0c;求出第y年m月d天的后一天是哪一天。 思路&#xff1a;分类讨论 分别讨论m和d的是否是最后一个月…

基于SpringBoot的旅游信息网【源码好优多】

简介 旅游信息网是一款介绍旅游相关内容的网站&#xff0c;分为前台和后台部分&#xff0c;其中前台用户注册以后可以浏览景点、景点详情、预订景点、酒店、车票、保险、以及浏览旅游攻略、个人信息修改、在线留言等&#xff0c;管理员在后台对景点、攻略、订单信息、酒店信息、…

oj赛氪练习题

数组调整 import java.util.Scanner;public class Main {public static void main(String[] args) {Scanner scanner new Scanner(System.in);int n scanner.nextInt();int k scanner.nextInt();int[] arr new int[n];for (int i 0; i < n; i) {arr[i] scanner.nextIn…

java源码-类与对象

1、面向对象与面向过程 在了解类和对象之前我们先了解一下什么是面向过程和面向对象。 1&#xff09;面向过程编程&#xff1a; C语言就是面向过程编程的&#xff0c;关注的是过程&#xff0c;分析出求解问题的步骤&#xff0c;通过函数调用逐步解决问题。 2&#xff09;面向对…

Redis 发布订阅机制深入探索

Redis 的发布订阅&#xff08;pub/sub&#xff09;机制是一种消息传递模式&#xff0c;允许消息的发送者&#xff08;发布者&#xff09;和消息的接收者&#xff08;订阅者&#xff09;通过一个中介层&#xff08;频道&#xff09;进行通信&#xff0c;而无需彼此直接交互。以下…

半导体工艺发展概述

集成电路发展到今天&#xff0c;经历从1940年的PN结发现&#xff0c;到1950年BJT三极管发明&#xff0c;再到1963年CMOS电路发明。从单纯基于Si的半导体电路&#xff0c;再到GaAs, GaN&#xff0c;SiGe, InP等化合物半导体集成电路。不断的通过化学材料配比&#xff0c;基本单元…

TinyVue 组件库助力赛意信息获得工业软件种子奖

首先恭喜广州赛意信息科技股份有限公司荣获工业软件种子奖&#xff01;在本次大赛中&#xff0c;凭借“数据驱动智造&#xff0c;基于 iDME 的赛意新一代 SMOM 赋能电子行业制造运营管理解决方案”这一作品脱颖而出~ 大赛简介 10月30日至10月31日&#xff0c;由广东省工业和信…

圆通速递查询入口,以表格的形式导出单号的每一条物流信息

批量查询圆通速递单号的物流信息&#xff0c;以表格的形式导出单号的每一条物流信息。 所需工具&#xff1a; 一个【快递批量查询高手】软件 圆通速递单号若干 操作步骤&#xff1a; 步骤1&#xff1a;运行【快递批量查询高手】软件&#xff0c;并登录 步骤2&#xff1a;点击…

Hadoop——分布式计算MapReduce和资源调度Yarn

分布式计算 MapReduce YARN架构 YARN集群部署 一、Hadoop安装目录下/etc/hadoop修改mapred-env配置文件&#xff0c;mapred-site.xml文件 二、etc/hadoop文件内&#xff0c;修改yarn-env.sh&#xff0c;yarn-site.xml 三、将配置好的文件分发到其他服务节点 start-dfs.…

SLAM ORB-SLAM2(10)轨迹跟踪过程

SLAM ORB-SLAM2(10)轨迹跟踪过程 1. 总体过程2. ORB 特征点提取2.1. 相机数据处理2.1.1. 单目相机图像处理2.1.2. 双目相机图像处理2.1.3. RGBD相机图像处理2.2. ORB 特征点3. 地图初始化3.1. 坐标形式3.2. 坐标原点3.3. 地图尺度4. 相机位姿初始估计4.1. 关键帧4.2. 运动模型…

文件搜索神器—Everything,结合内网穿透秒变在线搜索神器!

Everythingcpolar搭建在线资料库&#xff0c;实现随时随地访问 文章目录 Everythingcpolar搭建在线资料库&#xff0c;实现随时随地访问前言1.软件安装完成后&#xff0c;打开Everything2.登录cpolar官网 设置空白数据隧道3.将空白数据隧道与本地Everything软件结合起来总结 前…

【每日一题】1423. 可获得的最大点数-2023.12.3

题目&#xff1a; 1423. 可获得的最大点数 几张卡牌 排成一行&#xff0c;每张卡牌都有一个对应的点数。点数由整数数组 cardPoints 给出。 每次行动&#xff0c;你可以从行的开头或者末尾拿一张卡牌&#xff0c;最终你必须正好拿 k 张卡牌。 你的点数就是你拿到手中的所有…

【Android】解决安卓中并不存在ActivityMainBinding

安卓中并不存在ActivityMainBinding这个类&#xff0c;这个类是在XML布局的最外层加入就会自动生成。但是你在最后绑定主布局时会报错获取不到根节点getRoot(). 最好的办法就是&#xff0c;删除原来的最外层节点&#xff0c;再重新添加&#xff0c;感觉是因为复制时并没有让系…