解码 SQL:深入探索 Antlr4 语法解析器背后的奥秘

探寻SQL的背后机制

前言

在数据领域,SQL(Structured Query Language)是一门广泛使用的语言,用于查询和处理数据。你可能已经使用过诸如MySQL、Hive、ClickHouse、Doris、Spark和Flink等工具来编写SQL查询。

每一种框架都提供了对应的SQL语法,可以帮助我们从庞大的数据集中提取所需的信息,但你是否思考过他们的SQL查询是如何一步一步变成底层的执行结果的呢?

这正是本文将要探讨的问题。将由浅入深了解SQL语法的背后原理,揭示SQL查询是如何读取、翻译、处理、和最终执行。

这一切都得益于一个强大的工具——语法解析器。

文章中提及的所有代码示例都可以在 GitHub 上找到:antlr4-examples

语法解析器

介绍

SQL(Structured Query Language)是数据领域中的关键工具,用于查询和操作数据库中的数据。然而,SQL查询并非像魔术一样自动执行的。在执行之前,SQL语句需要经过一个关键步骤:语法解析。

SQL语法解析是SQL查询处理的起点,它的任务是将人类可读的SQL语句转换为计算机可以理解的结构,以便进一步执行。这个过程依赖于语法解析器,它是一种软件工具,负责解释和分析SQL查询,以确保其具有正确的语法。

举个例子,想象一下,如果我们自己发明了一种特殊的SQL语言,例如我们将其命名为GlSQL,其语法规则如下:

-- 查询tableA表的前十条记录的a、b、c字段
gl a, b, c to tableA head 10;

可以想象,市面上没有其他人使用这种特殊语法,因为它是我们自己创造的。如果我们希望这种语言能够成熟且优雅地发展,我们需要解决以下两个核心问题:

  1. 词法解析:词法解析是指将文本转化为词法单元或标记,即将关键字和符号识别出来。

  2. 语法解析:语法解析是将这些词法单元按照特定规则组合成正确的语句结构。

这种自定义语法的语言被称为“领域特定语言”(DSL)。然而,要手动实现DSL的词法解析和语法解析过程相当复杂,需要字符串解析、语法树构建、节点处理等多个步骤,如下图:

在这里插入图片描述

这时,成熟的语法解析器派上了用场。它们能够自动执行这些繁琐的任务,大大简化了DSL的开发过程。这也是语法解析器的关键作用。

市面上常见的语法解析器

市场上有多个SQL语法解析器,每个都具有独特的特点和能力:

  1. ANTLR (ANother Tool for Language Recognition): ANTLR 是一种强大的语法解析器生成器,支持多种编程语言。它能够生成用于词法分析和语法解析的解析器,广泛用于生成编程语言解析器、配置文件解析器、模板引擎等。

  2. **JavaCC(Java Compiler Compiler)**是一个用于构建解析器(Parser)和词法分析器(Lexer)的工具,它专注于生成 Java 代码。JavaCC 提供了一种定义和生成解析器的方式,使你能够将自定义的语法规则转化为 Java 代码,以便解析和处理特定领域语言(DSL)或文件格式。

  3. ANTLR 4 和 JavaCC: 这两者都支持 Java 语言,并在 Java 开发领域中广泛使用。ANTLR 4 的优势之一是它支持多种语言,而 JavaCC 主要专注于 Java。选择取决于项目的需求和开发人员的偏好。

  4. Calcite: Apache Calcite 是一种灵活的开源框架,用于构建自定义 SQL 解析器和优化器。它是 Apache Flink、Apache Hive 和其他项目的一部分,用于处理 SQL 查询。Calcite 允许用户定义自己的 SQL 方言,并进行查询优化。

Antlr4

介绍

ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files. It’s widely used to build languages, tools, and frameworks. From a grammar, ANTLR generates a parser that can build and walk parse trees.

ANTLR(另一个语言识别工具)是一个功能强大的解析器生成器,用于读取、处理、执行或翻译结构化文本或二进制文件。它被广泛用于构建语言、工具和框架。从语法中,ANTLR生成一个可以构建和遍历解析树的解析器。

市场应用

ANTLR 4被许多知名的企业和项目广泛使用。这些企业和项目包括:

  1. Twitter: Twitter 使用ANTLR来解析和分析用户的查询语言,这有助于他们的搜索和分析功能。

  2. IBM: IBM使用ANTLR来支持一些其产品和工具中的DSL(领域特定语言)解析需求,例如,在其企业集成解决方案中。

  3. Apache Hive: Apache Hive,用于大数据分析,也使用ANTLR来解析Hive查询语言。

  4. Apache Spark: Apache Spark,流行的大数据处理框架,使用ANTLR作为其SQL解析器的一部分,支持SQL查询。

  5. Apache Solr: Apache Solr是一个开源搜索平台,它使用ANTLR来解析查询表达式以进行高级搜索。

使用方式

ANTLR 4主要用于生成解析器和分析器,可以将这些生成的代码集成到自己的项目中。下面是一些与ANTLR 4相关的使用方式:

  1. 通过pip下载ANTLR 4运行时库: 使用pip(Python的包管理工具)下载ANTLR 4的运行时库,以便在Python项目中使用ANTLR 4生成的解析器。安装ANTLR 4运行时库后可以将其导入并在Python代码中使用。

  2. 下载源码并使用命令行工具:可以下载 ANTLR4 的源码,并使用命令行工具来编译和运行它。这需要手动设置一些环境变量,并了解如何使用命令行工具来编译和运行 ANTLR4。

  3. 在IDE中使用ANTLR 4插件及三方库: ANTLR 4有官方支持的IDE插件,如ANTLRWorks和ANTLR4 Grammar Plugin for IntelliJ IDEA。可以使用这些插件来创建和编辑ANTLR 4语法文件,然后生成解析器和词法分析器的代码。这些插件通常提供可视化工具来帮助我们调试和测试语法规则。

安装插件

首先需要在IDEA中安装antlr4插件,ANTLR 4插件对于在InIDEA中使用ANTLR 4非常有用,尤其是在处理ANTLR语法文件、生成代码以及进行调试时,如下图:

在这里插入图片描述

编写语法文件

ANTLR4使用.g4语法文件作为输入,这些文件定义了一种形式化的语法规则,描述了编程语言、数据格式或通用文本输入的结构。

开发人员根据目标语言的数据格式和语法规则,编写.g4文件。这些规则定义了输入文本的结构,如词法分析器(lexer)和语法分析器(parser)的规则,如下:

// 语法文件通常以 granmar 关键子开头 这是一个名为 JsonParser 的语法 它必须和 JsonParser.g4文件名相匹配
grammar JsonParser;

// 定义一条名为 json 的语法规则,它匹配一对花括号[START, STOP为词法关键词]、逗号分隔的 value [另一条语法规则,在下面], 以及 * 匹配多个 value
json : START value (',' value)* STOP ;

// 定义一条value的语法规则,正是上面json语法中的value,该value的值应该是 INT 或者继续是 json [代表嵌套], | 符号代表或
value :
      |json
      |INT
      ;

// 以下所有词法符号都是根据正则表达式判断
// 定义一个INT的词法符号, 只能是正整数
INT : [0-9]+ ;

// 定义一个START的词法符号, 只包含{
START : '{' ;

// 定义一个STOP的词法符号, 只包含}
STOP : '}' ;

// 定义一个AND的词法符号, 只包含,
AND : ',' ;

这是一个经典的ANTLR4的语法文件示例,用于解析JSON格式的数据,此时我们运行antlr4插件简单测试一下,如下:在语法文件中右键跟节点-> Test Rule json

在这里插入图片描述

在左侧输入框中输入特定语法右侧即会展示语法树,如下:

在这里插入图片描述

至此我们从理论层面初步体验了Antlr4的语法解析过程,接下来要结合代码使用

生成Java解析类

在上一步中,我们仅使用IDEA的Antlr4插件来验证了语法文件,但光有语法文件是不够的,实际应用中我们需要将其与代码结合起来并进行实际操作,而生成代码这一步骤也可以通过Antlr4插件来实现,首先需要指定Antlr4插件生成java类的路径,如下:右键JsonParser.g4 -> Configure

在这里插入图片描述
在这里插入图片描述

  • 生成java文件

在这里插入图片描述

此时生成的java类便是Antlr4所提供的核心功能,将AST语法树转化成类的表达方式,新建一个测试类复制如下代码:

import org.antlr.v4.runtime.ANTLRInputStream;
import org.antlr.v4.runtime.CommonTokenStream;
import org.antlr.v4.runtime.tree.ParseTree;
import org.junit.Test;

public class Example {

    @Test
    public void demo() {

        ANTLRInputStream input = new ANTLRInputStream("{1,2,{3,4}}");
        //词法解析器,处理input
        JsonParserLexer lexer = new JsonParserLexer(input);
        //词法符号的缓冲器,存储词法分析器生成的词法符号
        CommonTokenStream tokens = new CommonTokenStream(lexer);
        //语法分析器,处理词法符号缓冲区的内容
        JsonParserParser parser = new JsonParserParser(tokens);

        ParseTree tree = parser.json();
        System.out.println(tree.toStringTree(parser));
    }

}

在ParseTree中包含着children集合,在集合中抱着各个节点,每个节点又可以向下展开,从而形成类形式的语法树,如下:

在这里插入图片描述

自定义处理规则

在上一步中Antlr4帮我们将{1,2,{3,4}}字符串转化成了类形式的语法树,Antlr4生成的语法树只是一种理解和解析语言结构的方式,真正的业务逻辑处理还需要在语法树的基础上进行。就拿sql举例,sql语言解析成了语法树是远远不够的,还需要让语法树落地成读取物理文件的可执行的代码。

假设我们现在的规则是需要将{}中的所有数值相加求和,最后得到总和,那么该如何自定义呢?

  • Antlr4给我们提供了两种遍历树的方式:

  • 1、监听器模式–antlr4内部控制遍历语法树规则

  • 2、访问者模式—用户可以手动控制遍历语法树规则

这两种方式在此示例中的体现是两个接口【antlr4帮我们生成】,并且还帮我们生成了默认实现类:

在这里插入图片描述

监听器模式

监听器模式的特点是用户无需关心语法树的递归,统一由antlr提供的ParseTreeWalker类进行递归即可。

我们先自行实现ParseTreeListener接口,在其中填充自己的逻辑代码(通常是调用程序的其他部分),从而构建出我们自己的语言类应用程序,如下:

import org.antlr.v4.runtime.ParserRuleContext;
import org.antlr.v4.runtime.tree.ErrorNode;
import org.antlr.v4.runtime.tree.TerminalNode;

import java.util.HashMap;
import java.util.Map;

public class JsonParserListenerExample implements JsonParserListener {

    Map<String, Integer> map = new HashMap<>();

    @Override
    public void enterJson(JsonParserParser.JsonContext ctx) {
        if (!map.containsKey(ctx.getText())) {
            map.put(ctx.getText(), 0);
        }
    }

    @Override
    public void exitJson(JsonParserParser.JsonContext ctx) {
        if (ctx.parent == null) {
            int sum = map.values().stream().mapToInt(i -> i).sum();
            System.out.println(" result = " + sum);
        }
    }

    @Override
    public void enterValue(JsonParserParser.ValueContext ctx) {
        if (ctx.INT() != null && map.containsKey(ctx.parent.getText())) {
            map.put(ctx.parent.getText(), map.get(ctx.parent.getText()) + Integer.parseInt(ctx.INT().getText()));
        }
    }

    @Override
    public void exitValue(JsonParserParser.ValueContext ctx) {

    }
}
  • 测试:
@Test
public void demoListener(){

    ANTLRInputStream input = new ANTLRInputStream("{1,2,{3,4},{3,4}}");
    //词法解析器,处理input
    JsonParserLexer lexer = new JsonParserLexer(input);
    //词法符号的缓冲器,存储词法分析器生成的词法符号
    CommonTokenStream tokens = new CommonTokenStream(lexer);
    //语法分析器,处理词法符号缓冲区的内容
    JsonParserParser parser = new JsonParserParser(tokens);

    ParseTree tree = parser.json();
    // ParseTreeWalker类将实现的MeSqlParserBaseListener监听器放入
    new ParseTreeWalker().walk(new JsonParserListenerExample(), tree);
}

这里说一下执行流程:

在JsonParserListenerExample类中,语法中的每条规则都有对应的enter方法和exit方法。

例如,当遍历器访问到json规则对应的节点时,它就会调用enterJson()方法,然后将对应的AST语法树节点 JsonContext的实例当作参数传递进去,在遍历器访问了Json节点的全部子节点之后,它会调用exitJson()函数;

如果执行到叶子节点,它会调用enterValue()方法,将对应的语法树节点 ValueContext的实例当作参数传递给它,执行完成后执行exitValue()方法。

下图用标识了 ParseTreeWalker对AST语法树进行深度优先遍历的过程:

在这里插入图片描述

至此监听器程序结束。

访问者模式

访问者模式是23种设计模式中最复杂的模式,可参考:23-design-pattern

访问者模式的特点是需要用户自己手动控制语法树节点的调用,优点是灵活,sparksql也是使用这一模式来实现sql语法解析

在JsonParserVisitorExample中,语法里的每条规则对应接口中的一个visit方法

import org.antlr.v4.runtime.tree.ErrorNode;
import org.antlr.v4.runtime.tree.ParseTree;
import org.antlr.v4.runtime.tree.RuleNode;
import org.antlr.v4.runtime.tree.TerminalNode;

import java.util.List;

public class JsonParserVisitorExample implements JsonParserVisitor<Integer> {

	@Override
	public Integer visitJson(JsonParserParser.JsonContext ctx) {
		List<JsonParserParser.ValueContext> value = ctx.value();
		return value.stream().mapToInt(this::visitValue).sum();
	}

	@Override
	public Integer visitValue(JsonParserParser.ValueContext ctx) {
		if (ctx.json() != null) {
			return visitJson(ctx.json());
		}
		if (ctx.INT() != null) {
			return Integer.parseInt(ctx.INT().getText());
		}
		return 0;
	}

	@Override
	public Integer visit(ParseTree parseTree) {
		return null;
	}

	@Override
	public Integer visitChildren(RuleNode ruleNode) {
		return null;
	}

	@Override
	public Integer visitTerminal(TerminalNode terminalNode) {
		return null;
	}

	@Override
	public Integer visitErrorNode(ErrorNode errorNode) {
		return null;
	}
}
  • 测试:
@Test
public void demoVisitor() {

    ANTLRInputStream input = new ANTLRInputStream("{1,2,{3,4},{3,4}}");
    //词法解析器,处理input
    JsonParserLexer lexer = new JsonParserLexer(input);
    //词法符号的缓冲器,存储词法分析器生成的词法符号
    CommonTokenStream tokens = new CommonTokenStream(lexer);
    //语法分析器,处理词法符号缓冲区的内容
    JsonParserParser parser = new JsonParserParser(tokens);

    JsonParserVisitorExample jsonParserVisitorExample = new JsonParserVisitorExample();
    Integer sum = jsonParserVisitorExample.visitJson(parser.json());
    System.out.println(sum);
}

至此访问者模式结束。

使用总结

至此我们用两种方式实现了一个简单的DSL语言,回过头来再看一下开篇定义:

ANTLR是一款强大的语法分析器生成工具,可用于读取、处理、执行和翻译结构化的文本,用户可根据需要自定义语法规则来实现相应功能。

SparkSql中的应用

语法

  • 这里以sparkSql:3.0为例,语法文件地址:SqlBase.g4

  • 接下来我们将这该文件复制到IDEA中,打开SqlBaseParser.g4,右键执行Test Rule

在这里插入图片描述

  • 随便输入一条sql,查看右侧语法树:可以看到右侧生成了庞大的语法树,这就是SparkSQL的语法树

在这里插入图片描述

  • 接下来我们可以根据语法文件来生成相关配置类:

在这里插入图片描述

  • 此时我们查看工程中spark-catalyst依赖的parser包,可以看出两者完全一样

在这里插入图片描述

  • 由于sparksql是通过访问器模式实现递归调用语法树,故这里看SqlBaseBaseVisitor,发现真正实现的是子类:AstBuilder、SparkSqlAstBuilder,其内部实现函数便是sparksql各个节点的执行逻辑

在这里插入图片描述

示例

  • 接下来我们试着改一下Spark的Sql语法,新建一个类来自定义访问器
public class SqlBaseVisitorExample extends SqlBaseBaseVisitor<String> {
    @Override
    public String visitSingleStatement(SqlBaseParser.SingleStatementContext ctx) {
        System.out.println(" ...SqlBaseVisitorExample... "); // 打印
        return visitChildren(ctx);
    }
}
  • 测试类
import org.antlr.v4.runtime.ANTLRInputStream;
import org.antlr.v4.runtime.CommonTokenStream;
import org.junit.Test;

public class Example {

    @Test
    public void demoVisitor() {
        String query = "SELECT * FROM STUDENT WHERE ID > 10;";
        SqlBaseLexer lexer = new SqlBaseLexer(new ANTLRInputStream(query.toUpperCase()));
        SqlBaseParser parser = new SqlBaseParser(new CommonTokenStream(lexer));

        // 创建自定义访问器
        SqlBaseVisitorExample visitor = new SqlBaseVisitorExample();
        // 将parser语法树头节点放入
        visitor.visitSingleStatement(parser.singleStatement());
    }

}

至此SparkSql中涉及antlr4语法解析器阶段结束

相关文档

  • ANTLR4官网

  • ANTLR4-GitHub

  • SPARK官网

  • SPARK-GitHub

  • 23种设计模式

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/212723.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

阅读软件OmniReader Pro mac功能特色

OmniReader Pro mac是一款文字识别和阅读软件&#xff0c;它可以将印刷体和手写体的文字转换为数字文本&#xff0c;并将其朗读出来。该软件适用于视力受损、阅读困难、语言障碍等用户&#xff0c;可以帮助他们更加轻松地获取信息和阅读文本。 OmniReader Pro具有简洁直观的用户…

csapp-linklab之第5阶段“输出编码后的学号”(补齐残缺的重定位表)

实验内容 修改补充phase5.o重定位节中被清零的重定位记录&#xff0c;使其与main.o链接后能够正确输出学号编码后的字符串&#xff1a; $ gcc -o linkbomb main.o phase5.o $ ./linkbomb $学号编码后字符串 实验提示 仅需修改重定位节的内容。 不允许修改.text节内容。 给出…

python+Appium自动化:python多线程多并发启动appium服务

Python启动Appium 服务 使用Dos命令或者bat批处理来手动启动appium服务&#xff0c;启动效率低下。如何将启动Appium服务也实现自动化呢&#xff1f; 这里需要使用subprocess模块&#xff0c;该模块可以创建新的进程&#xff0c;并且连接到进程的输入、输出、错误等管道信息&…

系统托盘区句柄研究和C#基本托盘编程

因为我的系统托盘区小图标有时候会不可见,在还是在; 研究一下系统托盘区的句柄,是否每个小图标是一个单个窗口,就像form的button一样; 下图句柄工具,把问号拖动到窗口上,就会显示该窗口的句柄和窗口类等信息; 拖到系统托盘区看一下;拖到任何一个小图标上面,都只显示…

人工智能学习4(特征选择)

编译工具&#xff1a;PyCharm 有些编译工具在绘图的时候不需要写plt.show()或者是print就可以显示绘图结果或者是显示打印结果&#xff0c;pycharm需要&#xff08;matplotlib.pyplot&#xff09; 文章目录 编译工具&#xff1a;PyCharm 特征选择嵌入法特征选择练习&#xff…

训练自己的YOLOv8姿态估计模型

在不断发展的计算机视觉领域&#xff0c;姿态估计作为一项关键创新脱颖而出&#xff0c;改变了我们理解视觉数据以及与视觉数据交互的方式。 Ultralytics YOLOv8 处于这一转变的最前沿&#xff0c;提供了一个强大的工具来捕捉图像中物体方向和运动的微妙之处。 NSDT工具推荐&am…

使用Visual Studio创建第一个C代码工程

文章目录 2019创建C工程创建C文件运行 上一节我们使用记事本编辑C代码&#xff0c;在命令行运行文件&#xff0c;这种方式只是作为对编译器的了解&#xff0c;实际的开发中一般使用集成开发环境比较多&#xff0c;因为 集成开发环境操作比较简单&#xff0c;通常可编辑&#x…

工作几年了,你真的懂 Redis 嘛?

大家好&#xff0c;我是伍六七。一个专注于输出 AI 编程内容的在职大厂资深程序员&#xff0c;全国最大 AI 付费社群破局初创合伙人&#xff0c;关注我一起破除 35 诅咒。 Redis 基本上是大部分技术公司都会使用的缓存框架&#xff0c;但是我发现很多程序员其实并不懂 Redis。 …

canvas 轮廓路径提取效果

前言 微信公众号&#xff1a;前端不只是切图 轮廓 对内容做border效果&#xff0c;可以先看下代码运行的效果 内容是黑线构成的五角星&#xff0c;其轮廓就是红线的部分&#xff0c;本文主要介绍如何在canvas中实现这种效果 Marching Square 这里运用到的是marching square算法…

Gradio库的安装和使用教程

目录 一、Gradio库的安装 二、Gradio的使用 1、导入Gradio库 2、创建Gradio接口 3、添加接口到Gradio应用 4、处理用户输入和模型输出 5、关闭Gradio应用界面 三、Gradio的高级用法 1、多语言支持 2、自定义输入和输出格式 3、模型版本控制 4、集成第三方库和API …

边缘与云或边缘加云:前进的方向是什么?

边缘计算使数据处理更接近数据源&#xff0c;以及由此产生的行动或决策的对象。通过设计&#xff0c;它可以改变数十亿物联网和其他设备存储、处理、分析和通信数据的方式。 边缘计算使数据处理更接近数据源&#xff0c;以及由此产生的行动或决策的对象。这与传统的体系结构形成…

L1-016:查验身份证

题目描述 一个合法的身份证号码由17位地区、日期编号和顺序编号加1位校验码组成。校验码的计算规则如下&#xff1a; 首先对前17位数字加权求和&#xff0c;权重分配为&#xff1a;{7&#xff0c;9&#xff0c;10&#xff0c;5&#xff0c;8&#xff0c;4&#xff0c;2&#xf…

站群优化工具,站群优化方案策略

站群优化&#xff0c;作为网络推广的一项重要策略&#xff0c;站群的构建和优化对于提升网站在搜索引擎中的排名、吸引目标流量、增加用户粘性等方面有着不可忽视的作用。 站群优化方案 站群优化并非简单的堆积大量网站&#xff0c;更要注重质量和策略。在构建站群时&#xff…

VMware下载安装教程

目录 一.下载二.安装 一.下载 官网地址&#xff1a;官网 下载的时候选择Workstation Player&#xff0c;这个是免费的&#xff0c;当然你也可以选择下载Workstation Pro。 二.安装 下载完成之后点击安装包按照需要安装即可。 安装之后启动&#xff0c;可以看到这个能够免费使…

CPU标高load标高;linux故障日志排查

一般情况下&#xff0c;服务器不太会出问题。但是遇到特别诡异的情况&#xff0c;多半是服务器本身的问题。遇到问题&#xff0c;我们不能一味的去排查应用&#xff0c;中间件。更应该想到服务器的问题。否则很容易出现南辕北辙的情况。 这次分享的是一次服务器故障&#xff0c…

【小沐学Python】Python实现Web服务器(Flask+celery,生产者-消费者)

文章目录 1、简介2、安装和下载2.1 flask2.2 celery2.3 redis 3、功能开发3.1 创建异步任务的方法3.1.1 使用默认的参数3.1.2 指定相关参数3.1.3 自定义Task基类 3.2 调用异步任务的方法3.2.1 app.send_task3.2.2 Task.delay3.2.3 Task.apply_async 3.3 获取任务结果和状态 4、…

Java LeetCode篇-深入了解关于栈的经典解法(栈实现:中缀表达式转后缀)

&#x1f525;博客主页&#xff1a; 【小扳_-CSDN博客】 ❤感谢大家点赞&#x1f44d;收藏⭐评论✍ 文章目录 1.0 中缀表达式转后缀说明 1.1 实现中缀表达式转后缀思路 2.0 逆波兰表达式求值 2.1 实现逆波兰表达式求值思路 3.0 有效的括号 3.1 实现有效的括号思路 4.0 栈的压…

一文读懂MongoDB的全部知识点(1),惊呆面试官。

文章目录 01、mongodb是什么&#xff1f;02、mongodb有哪些特点&#xff1f;03、你说的NoSQL数据库是什么意思&#xff1f;NoSQL与RDBMS直接有什么区别&#xff1f;为什么要使用和不使用NoSQL数据库&#xff1f;说一说NoSQL数据库的几个优点?04、NoSQL数据库有哪些类型?05、M…

SmartSoftHelp8,端口安全进程查看管理工具

PID 协议 端口 所属进程名 本地绑定地址 远程地址 当前状态 关闭进程 下载地址&#xff1a; https://pan.baidu.com/s/1zBgeYsqWnSlNgiKPR2lUYg?pwd8888

ctfhub技能树_web_web前置技能_HTTP

目录 一、HTTP协议 1.1、请求方式 1.2、302跳转 1.3、Cookie 1.4、基础认证 1.5、响应包源代码 一、HTTP协议 1.1、请求方式 注&#xff1a;HTTP协议中定义了八种请求方法。这八种都有&#xff1a;1、OPTIONS &#xff1a;返回服务器针对特定资源所支持的HTTP请求方法…