训练自己的YOLOv8姿态估计模型

在不断发展的计算机视觉领域,姿态估计作为一项关键创新脱颖而出,改变了我们理解视觉数据以及与视觉数据交互的方式。 Ultralytics YOLOv8 处于这一转变的最前沿,提供了一个强大的工具来捕捉图像中物体方向和运动的微妙之处。

NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎

传统上,跟踪图像中对象的关键点非常复杂,但使用 YOLOv8,它变得无缝且直观。 这一进步不仅令人兴奋,而且还为各个领域开辟了一个充满可能性的世界,其中包括体育分析、医疗保健和零售等。

在本文中,我们将探索使用 YOLOv8 进行姿态估计的过程。 我们将介绍以下内容:

  • 使用 CVAT 进行姿势估计的数据标注:我们首先将数据集上传到 CVAT 平台,配置工具,标注关键点,然后导出数据。
  • 转换 Ultralytics YOLOv8 的标注:标注后,我们将数据转换为与 YOLOv8 兼容的格式,确保我们的模型可以正确解释它。
  • 数据分割:构建数据至关重要,因此我们将其分为训练集、验证集和测试集,以促进有效的模型训练。
  • 训练 YOLOv8 模型进行姿势估计:组织好数据后,我们将训练 YOLOv8 模型来识别和估计姿势。
  • 使用 YOLOv8 进行推理:最后,我们将使用经过训练的模型对新数据进行姿势估计,看看我们努力的结果。 你还可以浏览我们关于使用 Ultralytics YOLOv8 进行姿势估计的 YouTube 视频 。

让我们开始吧🚀

1、使用 CVAT 标注姿态数据

数据标注过程在计算机视觉领域至关重要。 我们将在本教程中使用老虎数据集来演示如何准确注释关键点,这是训练姿势估计模型的重要步骤。

图 1.2:Ultralytics Tiger-Pose 数据集

注意: Ultralytics Tiger-Pose数据集可以从这里下载并解压缩,为即将到来的任务做好准备。 这些图像将作为我们训练过程的基础,因此请确保它们存储方便。

如果你是 CVAT 新手,值得花时间查看 CVAT 文档来熟悉其功能。 这将为更加简化的标注过程提供基础。

1.1 上传数据集

下载Tiger-Pose图像后,请务必解压缩文件。 接下来,将所有图像作为新任务上传到 CVAT 平台,然后单击“提交并打开”。

完成后,你将被引导至如下所示的页面:

图1.3:Ultralytics Tiger-pose 数据集上传

1.2 设置标注工具 CVAT

在 CVAT 中打开任务后,系统会提示你选择一个特定作业,该作业将作为你的标注工作区。 每个用户的作业编号(例如此处提到的“作业#391317”)都会有所不同。 这将引导你进入标注界面,其中设置将完成,你可以开始标记数据。

图 1.4:使用 CVAT 的 Ultralytics YOLOv8 Tiger-pose 数据集标注工作流程

1.3 数据标注

使用 CVAT,你可以选择使用不同的格式进行标注。 对于Tiger-Pose数据集,我们将利用点标注来标记关键点。 该过程在教程中提供的详细 gif 中进行了可视化,指导你完成标注的每个步骤:

图 1.5:使用 CVAT 的 Ultralytics Tiger-pose 数据标注过程

1.4 数据导出

完成标注后,可以使用“CVAT for images 1:1”格式导出数据集,该格式适合稍后在工作流程中转换为 YOLOv8 格式。

2、将标注转换为YOLOv8 格式

从 CVAT 导出标注后,你将收到一个 zip 文件。 解压该文件以显示 annotations.xml文件,其中包含你分配的关键点和标签。 该文件至关重要,因为它包含 YOLOv8 将学习的结构化数据。

要将其与 YOLOv8 集成,请将annotations.xml文件放入与图像数据集相同的目录中。 如果你需要重新下载数据集,可以从  Ultralytics Tiger-Pose 数据集获取。 确保下载后解压缩文件,为下一步做好准备。

现在,创建一个名为 cvat_to_ultralytics_yolov8.py的 Python 脚本。 将提供的代码复制到这个新文件中。 运行此脚本会将你的标注转换为 YOLOv8 格式,为训练模型奠定基础:

import ast
import os.path
from xml.dom import minidom

out_dir = './out'
if not os.path.exists(out_dir):
    os.makedirs(out_dir)

file = minidom.parse('annotations.xml')

images = file.getElementsByTagName('image')

for image in images:
    width = int(image.getAttribute('width'))
    height = int(image.getAttribute('height'))
    name = image.getAttribute('name')
    elem = image.getElementsByTagName('points')
    bbox = image.getElementsByTagName('box')[0]
    xtl = int(float(bbox.getAttribute('xtl')))
    ytl = int(float(bbox.getAttribute('ytl')))
    xbr = int(float(bbox.getAttribute('xbr')))
    ybr = int(float(bbox.getAttribute('ybr')))
    w = xbr - xtl
    h = ybr - ytl
    label_file = open(os.path.join(out_dir, name + '.txt'), 'w')

    for e in elem:

        label_file.write('0 {} {} {} {} '.format(
            str((xtl + (w / 2)) / width),
             str((ytl + (h / 2)) / height),
             str(w / width),
             str(h / height)))

        points = e.attributes['points']
        points = points.value.split(';')
        points_ = []
        for p in points:
            p = p.split(',')
            p1, p2 = p
            points_.append([int(float(p1)), int(float(p2))])
        for p_, p in enumerate(points_):
            label_file.write('{} {}'.format(p[0] / width, p[1] / height))
            if p_ < len(points_) - 1:
                label_file.write(' ')
            else:
                label_file.write('\n')

运行脚本后,删除 annotations.xml以避免后续步骤中出现任何潜在的混乱。

3、数据分割

对数据集进行标注和转换后,下一步是将图像和标注组织成不同的集合以进行训练和评估。

  • 在项目中创建两个目录:一个名为 images,另一个名为 labels
  • 将图像及其相应的标注文件分别分发到这些文件夹中。
  • 为了促进此数据分割过程,请创建一个名为 splitdata.py的 Python 文件。
  • 将提供的代码复制并粘贴到 splitdata.py 文件中。
  • 通过运行该文件来执行 Python 脚本

此过程可确保你的数据被适当地划分为训练和测试子集,为 Ultralytics YOLOv8 训练做好准备。

import splitfolders

input_fol_path = "path to folder, that includes images and labels folder"
splitfolders.ratio(input_fold_path, output="output",
    seed=1337, ratio=(.8, .2, .0), group_prefix=None, move=False)

结果将是一个包含两个不同目录的输出文件夹: train和 test。 这些文件夹已准备好在 YOLOv8 训练过程中使用。

4、训练 YOLOv8 模型进行姿势估计

下一阶段涉及制作一个 data.yaml文件,该文件充当 YOLOv8 的路线图,将其定向到你的数据集并定义训练类。 将必要的代码插入 data.yaml,自定义数据集目录的路径。

请根据需要调整数据集目录路径。 配置 data.yaml后,就可以开始训练模型了。

path: "path to the dataset directory"
train: train
val: val 

kpt_shape: [12, 2]
flip_idx: [0,1,2,3,4,5,6,7,8,9,10,11]
names:
  0: tiger

一旦完成,就可以开始了! 你可以使用提供的命令来启动 YOLOv8 模型的训练以进行老虎姿势估计。

yolo task=pose mode=train data="path/data.yaml" model=yolov8n.pt imgsz=640

训练持续时间会有所不同,并且取决于你拥有的 GPU 设备。

5、使用 YOLOv8 进行推理

训练后,通过对新数据进行推理来测试你的模型。 运行提供的命令以应用姿势估计模型来检测和分析姿势。

# Run inference using a tiger-pose trained model
yolo task=pose mode=predict \
source="https://www.youtube.com/watch?v=MIBAT6BGE6U" \
show=True model="path/to/best.pt"

下图显示推理结果,展示了模型将所学知识应用到现实场景的能力:

图 1.7:使用 Tiger-Pose 估计模型估计老虎姿势


原文链接:YOLOv8姿态估计模型训练 - BimAnt

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/212717.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

使用Visual Studio创建第一个C代码工程

文章目录 2019创建C工程创建C文件运行 上一节我们使用记事本编辑C代码&#xff0c;在命令行运行文件&#xff0c;这种方式只是作为对编译器的了解&#xff0c;实际的开发中一般使用集成开发环境比较多&#xff0c;因为 集成开发环境操作比较简单&#xff0c;通常可编辑&#x…

工作几年了,你真的懂 Redis 嘛?

大家好&#xff0c;我是伍六七。一个专注于输出 AI 编程内容的在职大厂资深程序员&#xff0c;全国最大 AI 付费社群破局初创合伙人&#xff0c;关注我一起破除 35 诅咒。 Redis 基本上是大部分技术公司都会使用的缓存框架&#xff0c;但是我发现很多程序员其实并不懂 Redis。 …

canvas 轮廓路径提取效果

前言 微信公众号&#xff1a;前端不只是切图 轮廓 对内容做border效果&#xff0c;可以先看下代码运行的效果 内容是黑线构成的五角星&#xff0c;其轮廓就是红线的部分&#xff0c;本文主要介绍如何在canvas中实现这种效果 Marching Square 这里运用到的是marching square算法…

Gradio库的安装和使用教程

目录 一、Gradio库的安装 二、Gradio的使用 1、导入Gradio库 2、创建Gradio接口 3、添加接口到Gradio应用 4、处理用户输入和模型输出 5、关闭Gradio应用界面 三、Gradio的高级用法 1、多语言支持 2、自定义输入和输出格式 3、模型版本控制 4、集成第三方库和API …

边缘与云或边缘加云:前进的方向是什么?

边缘计算使数据处理更接近数据源&#xff0c;以及由此产生的行动或决策的对象。通过设计&#xff0c;它可以改变数十亿物联网和其他设备存储、处理、分析和通信数据的方式。 边缘计算使数据处理更接近数据源&#xff0c;以及由此产生的行动或决策的对象。这与传统的体系结构形成…

L1-016:查验身份证

题目描述 一个合法的身份证号码由17位地区、日期编号和顺序编号加1位校验码组成。校验码的计算规则如下&#xff1a; 首先对前17位数字加权求和&#xff0c;权重分配为&#xff1a;{7&#xff0c;9&#xff0c;10&#xff0c;5&#xff0c;8&#xff0c;4&#xff0c;2&#xf…

站群优化工具,站群优化方案策略

站群优化&#xff0c;作为网络推广的一项重要策略&#xff0c;站群的构建和优化对于提升网站在搜索引擎中的排名、吸引目标流量、增加用户粘性等方面有着不可忽视的作用。 站群优化方案 站群优化并非简单的堆积大量网站&#xff0c;更要注重质量和策略。在构建站群时&#xff…

VMware下载安装教程

目录 一.下载二.安装 一.下载 官网地址&#xff1a;官网 下载的时候选择Workstation Player&#xff0c;这个是免费的&#xff0c;当然你也可以选择下载Workstation Pro。 二.安装 下载完成之后点击安装包按照需要安装即可。 安装之后启动&#xff0c;可以看到这个能够免费使…

CPU标高load标高;linux故障日志排查

一般情况下&#xff0c;服务器不太会出问题。但是遇到特别诡异的情况&#xff0c;多半是服务器本身的问题。遇到问题&#xff0c;我们不能一味的去排查应用&#xff0c;中间件。更应该想到服务器的问题。否则很容易出现南辕北辙的情况。 这次分享的是一次服务器故障&#xff0c…

【小沐学Python】Python实现Web服务器(Flask+celery,生产者-消费者)

文章目录 1、简介2、安装和下载2.1 flask2.2 celery2.3 redis 3、功能开发3.1 创建异步任务的方法3.1.1 使用默认的参数3.1.2 指定相关参数3.1.3 自定义Task基类 3.2 调用异步任务的方法3.2.1 app.send_task3.2.2 Task.delay3.2.3 Task.apply_async 3.3 获取任务结果和状态 4、…

Java LeetCode篇-深入了解关于栈的经典解法(栈实现:中缀表达式转后缀)

&#x1f525;博客主页&#xff1a; 【小扳_-CSDN博客】 ❤感谢大家点赞&#x1f44d;收藏⭐评论✍ 文章目录 1.0 中缀表达式转后缀说明 1.1 实现中缀表达式转后缀思路 2.0 逆波兰表达式求值 2.1 实现逆波兰表达式求值思路 3.0 有效的括号 3.1 实现有效的括号思路 4.0 栈的压…

一文读懂MongoDB的全部知识点(1),惊呆面试官。

文章目录 01、mongodb是什么&#xff1f;02、mongodb有哪些特点&#xff1f;03、你说的NoSQL数据库是什么意思&#xff1f;NoSQL与RDBMS直接有什么区别&#xff1f;为什么要使用和不使用NoSQL数据库&#xff1f;说一说NoSQL数据库的几个优点?04、NoSQL数据库有哪些类型?05、M…

SmartSoftHelp8,端口安全进程查看管理工具

PID 协议 端口 所属进程名 本地绑定地址 远程地址 当前状态 关闭进程 下载地址&#xff1a; https://pan.baidu.com/s/1zBgeYsqWnSlNgiKPR2lUYg?pwd8888

ctfhub技能树_web_web前置技能_HTTP

目录 一、HTTP协议 1.1、请求方式 1.2、302跳转 1.3、Cookie 1.4、基础认证 1.5、响应包源代码 一、HTTP协议 1.1、请求方式 注&#xff1a;HTTP协议中定义了八种请求方法。这八种都有&#xff1a;1、OPTIONS &#xff1a;返回服务器针对特定资源所支持的HTTP请求方法…

微服务的流量管理-服务网格

对于单体应用来说&#xff0c;一般只有流入和流出两种流量。而微服务架构引入了跨进程的网络通信&#xff0c;流量发生在服务之间。由许多服务组成了复杂的网络拓扑结构&#xff0c;每次请求都会产生流量。 这些流量如果没有妥善的管理&#xff0c;整个应用的行为和状态将会不…

Linux安装nginx超完整步骤

1、到官网&#xff08;http://nginx.org&#xff09;下载nginx包,推荐使用稳定版本 2、上传nginx到linux系统&#xff0c;我上传的默认路径在/usr/local/下 3、安装依赖环境&#xff1a; ①安装gcc环境 yum install gcc-c ②安装PCRE库&#xff0c;用于解析正则表达式 yum…

轻易云AI:引领企业数智化转型提升企业AI效率

近期&#xff0c;轻易云AI与汤臣倍健的合作引起了业界的广泛关注。通过这一合作&#xff0c;轻易云AI不仅成功打造了集团小汤AI助手这一标志性的企业智能助手&#xff0c;更重要的是&#xff0c;这一合作凸显了轻易云AI作为专业AI应用集成专家的核心能力。轻易云AI已成功集成了…

数据结构算法-冒泡排序算法

引言 虽然选择排序好用 &#xff0c;但有点问题 也就是频繁找最大值下标 放到 未排序的后面 因为每次需要扫描整个未排序序列&#xff0c;找到最大值或最小值的下标&#xff0c;并将其交换到未排序序列的最后一个位置。这样做的问题在于&#xff0c;在后面的迭代中&#xff0c…

LinkWeChat,唯一以开源为核心的SCRM

LinkWeChat是国内首个基于企业微信的开源SCRM&#xff0c;在集成了企微强大的开放能力的基础上&#xff0c;进一步升级拓展灵活高效的客户运营能力及多元化精准营销能力&#xff0c;让客户与企业之间建立强链接&#xff0c;帮助企业提高客户运营效率&#xff0c;强化营销能力&a…

python 图书馆选座小程序源码

开发工具&#xff1a; PyCharm&#xff0c;mysql5.7&#xff0c;微信开发者工具 技术说明&#xff1a; python django html 小程序 功能介绍&#xff1a; 用户端&#xff1a; 登录注册&#xff08;含授权登录&#xff09; 首页显示搜索房间&#xff0c;轮播图&#xff0…