逻辑回归与正则化 逻辑回归、激活函数及其代价函数

逻辑回归、激活函数及其代价函数

线性回归的可行性

对分类算法,其输出结果y只有两种结果{0,1},分别表示负类和正类,代表没有目标和有目标。
在这种情况下,如果用传统的方法以线性拟合 ( h θ ( x ) = θ T X ) (h_θ (x)=θ^T X) hθ(x)=θTX对于得到的函数应当对y设置阈值a,高于a为一类,低于a为一类

对于分类方法,这种拟合的方式极易受到分散的数据集的影响而导致损失函数的变化,以至于对于特定的损失函数,其阈值的设定十分困难。

除此之外, h θ ( x ) h_θ (x) hθ(x)(在分类算法中称为分类器)的输出值很可能非常大或者非常小,并不与{0,1}完全相符

假设表示

基于上述情况,要使分类器的输出在[0,1]之间,可以采用假设表示的方法。
h θ ( x ) = g ( θ T x ) h_θ (x)=g(θ^T x) hθ(x)=g(θTx)
其中 g ( z ) = 1 ( 1 + e − z ) g(z)=\frac{1}{(1+e^{−z} )} g(z)=(1+ez)1, 称为逻辑函数(Sigmoid function,又称为激活函数,生物学上的S型曲线)
h θ ( x ) = 1 ( 1 + e − θ T X ) h_θ (x)=\frac{1}{(1+e^{−θ^T X} )} hθ(x)=(1+eθTX)1

其两条渐近线分别为h(x)=0和h(x)=1

在分类条件下,最终的输出结果是:
h θ ( x ) = P ( y = 1 │ x , θ ) h_θ (x)=P(y=1│x,θ) hθ(x)=P(y=1│x,θ)

其代表在给定x的条件下 其y=1的概率

P ( y = 1 │ x , θ ) + P ( y = 0 │ x , θ ) = 1 P(y=1│x,θ)+P(y=0│x,θ)=1 P(y=1│x,θ)+P(y=0│x,θ)=1

决策边界( Decision boundary)

对假设函数设定阈值 h ( x ) = 0.5 h(x)=0.5 h(x)=0.5
h ( x ) ≥ 0.5 h(x)≥0.5 h(x)0.5 时,输出结果y=1.

根据假设函数的性质,当 x ≥ 0 时, x≥0时, x0时,h(x)≥0.5
θ T x θ^T x θTx替换x,则当 θ T x ≥ 0 θ^T x≥0 θTx0时, h ( x ) ≥ 0.5 , y = 1 h(x)≥0.5,y=1 h(x)0.5y=1

解出 θ T x ≥ 0 θ^T x≥0 θTx0,其答案将会是一个在每一个 x i x_i xi轴上都有的不等式函数。

这个不等式函数将整个空间分成了y=1 和 y=0的两个部分,称之为决策边界

激活函数的代价函数

在线性回归中的代价函数:
J ( θ ) = 1 m ∑ i = 1 m 1 2 ( h θ ( x ( i ) ) − y ( i ) ) 2 J(θ)=\frac{1}{m}∑_{i=1}^m \frac{1}{2} (h_θ (x^{(i)} )−y^{(i)} )^2 J(θ)=m1i=1m21(hθ(x(i))y(i))2

C o s t ( h θ ( x ) , y ) = 1 2 ( h θ ( x ( i ) ) − y ( i ) ) 2 Cost(hθ (x),y)=\frac{1}{2}(h_θ (x^{(i)} )−y^{(i)} )^2 Costhθ(x)y=21(hθ(x(i))y(i))2
Cost是一个非凹函数,有许多的局部最小值,不利于使用梯度下降法。对于分类算法,设置其代价函数为:
J ( θ ) = − 1 m ∑ i = 1 m [ y ( i ) l o g ( h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) ∗ l o g ( 1 − h θ ( x ( i ) ) ) ] J(θ)=-\frac{1}{m}∑_{i=1}^m [y^{(i)}log(h_θ (x^{(i)}) )−(1-y^{(i)})*log(1-h_θ (x^{(i)}))] J(θ)=m1i=1m[y(i)log(hθ(x(i)))(1y(i))log(1hθ(x(i)))]

对其化简:
C o s t ( h θ ( x ) , y ) = − y l o g ( h θ ( x ) ) − ( ( 1 − y ) l o g ⁡ ( 1 − h θ ( x ) ) ) Cost(h_θ (x),y)=−ylog(h_θ (x))−((1−y)log⁡(1−h_θ (x))) Costhθ(x),y=ylog(hθ(x))((1y)log(1hθ(x)))
检验:
y = 1 y=1 y=1时, − l o g ⁡ ( h θ ( x ) ) −log⁡(h_θ (x)) log(hθ(x))
y = 0 y=0 y=0时, − l o g ⁡ ( 1 − h θ ( x ) ) −log⁡(1−h_θ (x)) log(1hθ(x))

那么代价函数可以写成:
J ( θ ) = − 1 m [ ∑ i = 1 m y ( i ) l o g ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) l o g ( 1 − h θ ( x ( i ) ) ) ] J(θ)=-\frac{1}{m}[∑_{i=1}^m y^{(i)} log⁡(h_θ(x^{(i)} ))+(1−y^{(i)}) log(1−h_θ (x^{(i)}))] J(θ)=m1[i=1my(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))]

对于代价函数,采用梯度下降算法求θ的最小值:
θ j ≔ θ j − α ∂ J ( θ ) ∂ θ j θ_j≔θ_j−α\frac{∂J(θ)}{∂θ_j} θj:=θjαθjJ(θ)
代入梯度:
θ j ≔ θ j − α ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j i θ_j≔θ_j−α∑_{i=1}^m(h_θ (x^{(i)} )−y^{(i)} ) x_j^i θj:=θjαi=1m(hθ(x(i))y(i))xji

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/211894.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

scrapyd及gerapy的使用及docker-compse部署

一、scrapyd的介绍 scrapyd是一个用于部署和运行scrapy爬虫的程序,它允许你通过JSON API(也即是web api)来部署爬虫项目和控制爬虫运行,scrapyd是一个守护进程,监听爬虫的运行和请求,然后启动进程来执行它们 scrapyd的安装 scr…

opencv知识库:基于cv2.flip()函数对图像进行随机翻转(水平/垂直)

需求场景 欲对RGB格式的lena图像进行随机翻转,要求这些图像不翻转、水平翻转、垂直翻转的概率都为1/3。 功能代码 import cv2 import random# 读取并展示图像 img cv2.imread("lena.jpg") cv2.imshow(lena, img) cv2.waitKey(0)for i in range(6): #…

matlab操作方法(一)——向量及其操作

1.向量及其操作 matlab是英文Matrix Laboratory(矩阵实验室)的简称,是基于矩阵运算的操作环境。matlab中的所有数据都是以矩阵或多维数组的形式存储的。向量和标量是矩阵的两种特殊形式 向量是指单行或者单列的矩阵,它是构成矩阵…

QT 中 QDateTime::currentDateTime() 输出格式备查

基础 QDateTime::currentDateTime() //当前的日期和时间。 QDateTime::toString() //以特定的格式输出时间,格式 yyyy: 年份(4位数) MM: 月份(两位数,07表示七月) dd: 日期(两位数&#xff0c…

代码浅析DLIO(四)---位姿更新

0. 简介 我们刚刚了解过DLIO的整个流程,我们发现相比于Point-LIO而言,这个方法更适合我们去学习理解,同时官方给出的结果来看DLIO的结果明显好于现在的主流方法,当然指的一提的是,这个DLIO是必须需要六轴IMU的&#x…

Redis--10--Pipeline

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 Pipeline举例比较普通模式与 PipeLine 模式小结: Pipeline 前面我们已经说过,Redis客户端执行一条命令分为如下4个部分:1)发送命…

基于Java SSM框架+Vue实现汉服文化平台网站项目【项目源码+论文说明】

基于java的SSM框架Vue实现汉服文化平台系统演示 摘要 本论文主要论述了如何使用JAVA语言开发一个汉服文化平台网站 ,本系统将严格按照软件开发流程进行各个阶段的工作,采用B/S架构,面向对象编程思想进行项目开发。在引言中,作者将…

【论文阅读】ICRA: An Intelligent Clustering Routing Approach for UAV Ad Hoc Networks

文章目录 论文基本信息摘要1.引言2.相关工作3.PROPOSED SCHEME4.实验和讨论5.总结补充 论文基本信息 《ICRA: An Intelligent Clustering Routing Approach for UAV Ad Hoc Networks》 《ICRA:无人机自组织网络的智能聚类路由方法》 Published in: IEEE Transactions on Inte…

Selenium自动化测试 —— 模拟鼠标键盘的操作事件

鼠标操作事件 在实际的web产品测试中,对于鼠标的操作,不单单只有click(),有时候还要用到右击、双击、拖动等操作,这些操作包含在ActionChains类中。 ActionChains类中鼠标操作常用方法: 首先导入ActionChains类&#…

国际语音群呼系统的产品优势有哪些?为什么要使用国际语音群呼系统?

一、国际语音群呼系统的产品优势: 1.巨量群呼 支持大容量并发群呼,呼叫不受限制,充裕的线路保障造就百万级平台容量,可以短时间内同时拨打大量电话,让语音快速到达,大大提高发送效率; 2.自主…

数字媒体技术基础之:常见字体类型

字体 Font在数字设计和排版中起着至关重要的作用,不同的字体类型为文本呈现和创意表达提供了丰富多样的可能性。 .fon 字体 .fon 文件是 Windows 早期系统中使用的一种字体文件格式。 特点: 1、基于像素的位图字体。 2、不支持无损缩放,主要用…

揭秘原型链:探索 JavaScript 面向对象编程的核心(下)

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

VIT总结

关于transformer、VIT和Swin T的总结 1.transformer 1.1.注意力机制 An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is computed as a wei…

Windows微软常用运行库合集2023

微软常用运行库合集适用于Windows系统的运行库合集包,基于微软官方的运行库而制作的,包括了常用的vb,vc2005/2008/2010/2012/2013/2017/2019/2005-2022,Microsoft Universal C Runtime,VS 2010 Tools For Office Runti…

Windows远程桌面提示出现身份验证错误 要求的函数不支持

现象 解决方案: 在cmd运行框输入:gpedit.msc打开组策略编辑器路径:计算机配置→管理模板→Windows组件→远程桌面服务→远程桌面会话主机→安全开启远程连接要求使用指定的安全层 禁用要求使用网络级别的身份验证对远程连接的用户进行身份验…

HttpRunner自动化测试之实现参数化传递

参数化实现及重复执行 参数化测试:在接口测试中,为了实现不同组数据对同一个功能模块进行测试,需要准备多组测试数据对模块进行测试的过程。 在httprunner中可以通过如下方式实现参数化: 1、在YAML/JSON 中直接指定参数列表 2、…

Python标准库:math库【侯小啾python领航班系列(十六)】

Python标准库:math库【侯小啾python领航班系列(十六)】 大家好,我是博主侯小啾, 🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ…

面试 Java 基础八股文十问十答第三期

面试 Java 基础八股文十问十答第三期 作者:程序员小白条,个人博客 ⭐点赞⭐收藏⭐不迷路!⭐ 21.说下Java8的Stream流的常用方法 答: forEach遍历、find、match进行匹配reduce进行归约,比如求和,乘,除聚合…

上门按摩APP小程序,抓住机遇创新服务新模式;

上门按摩APP小程序:抓住机遇,创新服务新模式; 随着现代人对生活质量要求的提高,上门按摩服务正成为一种新的、受欢迎的生活方式。通过APP小程序,用户可以轻松预约按摩服务,解决身体疲劳问题,享受…

汇编语言实现音乐播放器

目标程序 用汇编语言实现一个音乐播放器,并支持点歌 Overview 乐曲是按照一定的高低、长短和强弱关系组成的音调,在一首乐曲中,每个音符的音高和音长与频率和节拍有关,因此我们要分别为3首要演奏的乐曲定义一个频率表和一个节拍…