Python逐步打造惊艳的折线图

大家好,Matplotlib可以快速轻松地使用现成的函数绘制图表,但是微调步骤需要花费更多精力。今天本文将介绍如何使用Matplotlib绘制吸引人的图表,实现折线图的惊艳变身。

1.数据

为了说明方法,本文使用了包含过去50年各国GDP信息的公开数据集:

来源:世界银行国民账户数据和OECD(经济合作与发展组织)国民账户数据文件。

许可证URL:https://datacatalog.worldbank.org/public-licenses#cc-by

导入必要的软件包、读取数据、绘制图表,对2022年的GDP前20个国家进行筛选:

import pandas as pd
import matplotlib.pyplot as plt
from datetime import timedelta

# 读取数据
df = pd.read_csv('88a1e584-0a94-4e73-b650-749332831ef4_Data.csv', sep=',')
df.drop(['Series Name', 'Series Code', 'Country Code'], axis=1, inplace=True)
df = df.dropna(subset=['Country Name'])

# 对 2022 年最富有的 20 个国家进行筛选
top_20_countries = df[df['Year'] == '2022-01-01'].sort_values('GDP', ascending = False).head(20)['Country Name'].tolist()
df = df[df['Country Name'].isin(top_20_countries)].reset_index(drop = True)

df.head()

2.基本图

首先,只需四行代码就足以创建图形,并循环遍历各国以绘制它们各自的折线:

# 创建图形和坐标轴对象,指定尺寸和DPI
fig, ax = plt.subplots(figsize=(13.33,7.5), dpi = 96)

# 绘制折线
for country in top_20_countries:
    data = df[df['Country Name'] == country]
    line = ax.plot(data['Year'], data['GDP'], label=country)

图片

最基本的Matplotlib折线图

3.基本要素

接下来向图表中添加一些关键内容,使其更易于观众阅读。

  • 网格

为了提高图表的可读性,网格是必不可少的。将网格的透明度设置为0.5,这样它们就不会对数据点造成太大干扰。

  • X轴和Y轴重新格式化

为了更全面地了解微调的可能性,本文故意添加了更多的参数。X轴不需要major_formatter 和major_locator对象,因为本文只显示年份,但如果读者的X轴包含其他数字,这就会派上用场。

  • 图例

由于要显示很多条线,因此添加标签和图例非常重要,这样读者就能知道哪条线是哪条线。

# 添加图例
ax.legend(loc="best", fontsize=8)

# 创建网格
ax.grid(which="major", axis='x', color='#DAD8D7', alpha=0.5, zorder=1)
ax.grid(which="major", axis='y', color='#DAD8D7', alpha=0.5, zorder=1)

# 重新格式化x轴标签和刻度线标签
ax.set_xlabel('', fontsize=12, labelpad=10) # 不需要轴标签
ax.xaxis.set_label_position("bottom")
#ax.xaxis.set_major_formatter(lambda s, i : f'{s:,.0f}') #以防万一我们需要额外的格式设置
#ax.xaxis.set_major_locator(MaxNLocator(integer=True)) #以防我们需要额外的格式化
ax.xaxis.set_tick_params(pad=2, labelbottom=True, bottom=True, labelsize=12, labelrotation=0)

# 重新格式化y轴
ax.set_ylabel('GDP (Billions USD)', fontsize=12, labelpad=10)
ax.yaxis.set_label_position("left")
ax.yaxis.set_major_formatter(lambda s, i : f'{s*10**-9:,.0f}')
#ax.yaxis.set_major_locator(MaxNLocator(integer=True)) #以防我们需要额外的格式化
ax.yaxis.set_tick_params(pad=2, labeltop=False, labelbottom=True, bottom=False, labelsize=12)

图片

为本文的图表添加一些必要的功能

4.突出重点

接下来,突出显示最富有的五个国家,并跟踪其GDP随时间的变化。在字典中定义了特定的颜色和线条样式,并对代码稍作修改,以单独绘制它们。

# 颜色和线条样式
colors_dict = {'United States': '#014f86', 'China': '#DC0000', 'Japan': '#ff4d6d', 'Germany': '#403d39', 'India': '#6a994e'}
line_styles_dict = {'United States': '-', 'China': '-', 'Japan': '-', 'Germany': '-', 'India': '-'}

# 绘制前5条线
for country in top_20_countries[:5]:
    color = colors_dict.get(country, 'grey')  # 从字典中获取颜色,如果找不到,默认为灰色
    line_style = line_styles_dict.get(country, '-')  # 从字典中获取线条样式,如果未找到,默认为实线
    data = df[df['Country Name'] == country]
    line = ax.plot(data['Year'], data['GDP'], color=color, linestyle=line_style, zorder=2, label=country)

# 添加图例
ax.legend(loc="best", fontsize=8)

# 绘制剩余部分
for country in top_20_countries[5:]:
    data = df[df['Country Name'] == country]
    line = ax.plot(data['Year'], data['GDP'], color='grey', linestyle=':', linewidth=0.5, zorder=2)

图片

5.修改外观

为本文的图表添加一些功能,可以使其看起来更加专业。它们将位于所有图表的顶部,并且与本文中使用的数据无关。

通过下面的代码片段,这些调整将很容易实现。读者可以根据自己的需求对其进行调整,以创建自己的视觉风格。

  • 边框

边框是图表周围可见的框。除了左边的边框会设置得稍微粗一些外,其余的边框都将被移除。

  • 顶部的红线和矩形

在标题上方添加一条红线和一个矩形,以便将图表与上方的文本很好地隔离开来。

  • 标题和副标题

添加标题来介绍图表,副标题可以用来进一步解释内容,甚至呈现初步的结论。

  • 来源

在所有制作的图表中都必不可少的一项。

  • 调整边距

调整图表区域周围的边距,以确保充分利用所有可用空间。

  • 设置白色背景

将背景设置为白色(默认为透明)在通过电子邮件、Teams或任何其他工具发送图表时非常有用,因为透明背景可能会造成问题。

# 移除边框
ax.spines[['top','right','bottom']].set_visible(False)

# 加粗左侧边框
ax.spines['left'].set_linewidth(1.1)

# 在顶部添加红线和矩形
ax.plot([0.05, .9], [.98, .98], transform=fig.transFigure, clip_on=False, color='#E3120B', linewidth=.6)
ax.add_patch(plt.Rectangle((0.05,.98), 0.04, -0.02, facecolor='#E3120B', transform=fig.transFigure, clip_on=False, linewidth = 0))

# 添加标题和副标题
ax.text(x=0.05, y=.93, s="Evolution of the 20 Richest Countries GDP over the Past 50 Years", transform=fig.transFigure, ha='left', fontsize=14, weight='bold', alpha=.8)
ax.text(x=0.05, y=.90, s="Focus on the current 5 richest countries from 1973 to 2022", transform=fig.transFigure, ha='left', fontsize=12, alpha=.8)

# 设置来源文本
ax.text(x=0.05, y=0.12, s="Source: World Bank - https://databank.worldbank.org/", transform=fig.transFigure, ha='left', fontsize=10, alpha=.7)

# 调整绘图区域周围的边距
plt.subplots_adjust(left=None, bottom=0.2, right=None, top=0.85, wspace=None, hspace=None)

# 设置白色背景
fig.patch.set_facecolor('white')

图片

6.点睛之笔

为了得到在文章开头介绍的最终结果,剩下要做的就是实现这几个额外的组件:

  • 终点标记

这些元素纯粹是为了美观,但能为本文的折线图增添一份亮点。用标记突出显示每条折线的最后一个点,使其更加醒目。

  • 注释

借助annotate方法,可以突出显示图表中的特定点,并在其上直接添加注释。

# 绘制前5条线
for country in top_20_countries[:5]:
    color = colors_dict.get(country, 'grey')  # 从字典中获取颜色,如果找不到,默认为黑色
    line_style = line_styles_dict.get(country, '-')  # 从字典中获取线条样式,如果找不到,默认为实线
    data = df[df['Country Name'] == country]
    line = ax.plot(data['Year'], data['GDP'], color=color, linestyle=line_style, zorder=2, label = country)
    ax.plot(data['Year'].iloc[-1], data['GDP'].iloc[-1], 'o', color=color, markersize=10, alpha=0.3)
    ax.plot(data['Year'].iloc[-1], data['GDP'].iloc[-1], 'o', color=color, markersize=5)

# 在图表上添加一些文字
ax.annotate('During the 2000s,\nChina began experiencing rapid economic growth,\noutpacing all other countries.',
            (data['Year'].iloc[-18], 2000000000000),
            xytext=(data['Year'].iloc[-28]-timedelta(days=500), 18000000000000),
            ha='left', fontsize=9, arrowprops=dict(arrowstyle='-|>', facecolor='k', connectionstyle="arc3,rad=-0.15"))

图片

最终成果:这个折线图清晰易读 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/211596.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

短线买入卖出有哪些交易技巧?

前面两节课,我们认识了短线交易,知道了短线交易常见的买入卖出时机,这节课,我们来讲解一下短线买入卖出的一些交易技巧。话不多时,直接进入重点! 一、短线交易要果断 短线波动快,在出现买卖信号…

Redis集群详解

1.1 什么是Redis集群 Redis集群是一种通过将多个Redis节点连接在一起以实现高可用性、数据分片和负载均衡的技术。它允许Redis在不同节点上同时提供服务,提高整体性能和可靠性。根据搭建的方式和集群的特性,Redis集群主要有三种模式:主从复制…

Vue基础知识点梳理

在Vue中,被用来响应地更新HTML属性的指令是v-model页面挂载成功之后会触发哪一个钩子函数mounted挂载之后会进行页面的渲染v-on是动作元素不属于条件渲染指令 在Vue中,下列关于Vue实例对象说法不正确的是()。A.Vue实例对象是通过n…

Spring Cloud NetFlix

文章目录 Spring Cloud1 介绍2 Eureka(服务注册与发现)2.1 介绍2.2 服务注册与发现示例2.2.1 Eureka Server:springcloud-eureka2.2.2 Eureka Client:springcloud-provider2.2.3 Eureka Client:springcloud-consumer 2…

木马病毒是怎么进入服务器的,要如何防范

木马病毒通常是基于计算机网络,基于客户端和服务端的通信、监控程序。名称来源于公元前十二世纪希腊和特洛伊之间的一场战争。能够在计算机管理员未发觉的情况下开放系统权限、泄漏用户信息、甚至窃取整个计算机管理使用权限,隐匿性高。 木马病毒的入侵方…

开关电源的电感选择和布局布线

开关电源(SMPS, Switched-Mode Power Supply)是一种非常高效的电源变换器,其理论值更是接近100%,种类繁多。按拓扑结构分,有Boost、Buck、Boost-Buck、Charge-pump等;按开关控制方式分&#xff…

c语言:整数与浮点数在内存中的存储方式

整数在内存中的存储: 在计算机内存中,整数通常以二进制形式存储。计算机使用一定数量的比特(bit)来表示整数,比如32位或64位。在存储整数时,计算机使用补码形式来表示负数,而使用原码形式来表示…

如何创建一个vue工程

1.打开vue安装网址:安装 | Vue CLI (vuejs.org) 2.创建一个项目文件夹 3.复制地址 4.打开cmd,进入这个地址 5.复制粘贴vue网页的安装命令 npm install -g vue/cli 6.创建vue工程 vue create vue这里可以通过上下键来进行选择。选最后一个选项按回车。 …

企业网盘在医疗行业资料管理中的应用与优势

随着企业网盘的广泛应用,医疗行业正逐渐实现资料安全存储和智能化管理。海量应用的推动下,医院管理正朝着线上化、智能化发展迈进。然而,医疗行业仍面临着诸多挑战。 医疗行业的痛点在于病例、档案、药品资料繁多且保存周期长。这些资料的整理…

L1-009:N个数求和

目录 ⭐题目描述⭐ ⭐分析 ⭐程序代码 运行结果 ⭐文案分享⭐ ⭐题目描述⭐ 本题的要求很简单,就是求N个数字的和。麻烦的是,这些数字是以有理数分子/分母的形式给出的,你输出的和也必须是有理数的形式。 输入格式: 输入第一行给出…

XIAO ESP32S3之SenseCraft 模型助手部署

sipeed教程:SenseCraft 模型助手部署 | Seeed Studio Wiki 一、安装ESP-IDF 鉴于我的电脑之前安装过esp-idf v4.3版本,而ESP32-S3需要v4.4及以上版本才支持,所以将esp-idf更新到最新5.1版本。 1、启动mingw32.exe应用 2、进入esp-idf目录 …

前端小记--2.element-ui中级联选择器cascader如何默认展开下拉框

最近做项目时,遇到一个需求:在一个排班表中,展示人员的值班情况,点击单元格,弹出下拉框,修改人员排班信息。 由于下拉框选择内容是树状结构,这里使用了element-ui中级联组件cascader&#xff0c…

ganache部署智能合约报错VM Exception while processing transaction: invalid opcode

这是因为编译的字节码不正确,ganache和remix编译时需要选择相同的evm version 如下图所示: remix: ganache: 确保两者都选择london或者其他evm,只要确保EVM一致就可以正确编译并部署, 不会再出现VM Exception while processing…

Wireshark使用详解

wireshark简介 wireshark是捕获机器上的某一块网卡的网络包,当你的机器上有多块网卡的时候,你需要选择一个网卡。   wireshark能获取HTTP,也能获取HTTPS,但是不能解密HTTPS,所以wireshark看不懂HTTPS中的内容&#…

【C++】类和对象——初始化列表和static修饰成员

首先我们来谈一下初始化列表,它其实是对于我们前边构造函数体内初始化的一种补充,换一种说法,它以后才是我们构造函数的主体部分。 我们先考虑一个问题,就是一个类里面有用引用或const初始化的成员变量,比如说&#xf…

【【FPGA 之 MicroBlaze 自定义IP核 之 呼吸灯实验】】

FPGA 之 MicroBlaze 自定义IP核 之 呼吸灯实验 通过创建和封装 IP 向导的方式来自定义 IP 核,支持将当前工程、工程中的模块或者指定文件目录封装成 IP 核,当然也可以创建一个带有 AXI4 接口的 IP 核,用于 MicroBlaze 软核处理器和可编程逻辑…

kubernetes中YAML介绍;API资源对象Pod;Pod原理和生命周期;Pod资源限制

YAML介绍;API资源对象Pod;Pod原理和生命周期;Pod资源限制 1)认识YAML 官网(https://yaml.org/) YAML 语言创建于 2001 年,比 XML 晚了三年。YAML虽然在名字上模仿了XML,但实质上与…

Spring之RestTemplate详解

Spring之RestTemplate详解 1 RestTemplate1.1 引言1.2 环境配置1.2.1 非Spring环境下使用RestTemplate1.2.2 Spring环境下使用 RestTemplate1.2.3 Spring环境下增加线程号 1.3 API 实践1.3.1 GET请求1.3.1.1 不带参请求1.3.1.2 带参的get请求(使用占位符号传参)1.3.1.3 带参的g…

西南科技大学模拟电子技术实验四(集成运算放大器的线性应用)预习报告

一、计算/设计过程 说明:本实验是验证性实验,计算预测验证结果。是设计性实验一定要从系统指标计算出元件参数过程,越详细越好。用公式输入法完成相关公式内容,不得贴手写图片。(注意:从抽象公式直接得出结果,不得分,页数可根据内容调整) 反相比例运算电路(1)实验…

VMware Workstation Pro 17及 Windows 11 虚拟机的安装与激活

六点钟: 吃晚饭吗 不吃,胖胖 十点钟: 阿昊要吃夜宵对不对 ——CSDN,记录牛马生活 本文是在学习 Linux 期间,使用 VMware 时顺带学习 Windows 11 虚拟机的安装与激活 VMware Workstation Pro 17及 Windows 11 虚拟机…