语义分割 U-net网络学习笔记 (附代码)

论文地址:https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28
代码地址:https://b23.tv/PCJJmqN

1.是什么?

Unet是一种用于图像分割的深度学习网络模型,其结构由编码器和解码器组成,可以对图像进行像素级别的分割。具体来说,编码器部分采用卷积神经网络对图像进行特征提取和降维,解码器部分则采用反卷积神经网络对特征进行上采样和重建。Unet的特点是具有较少的参数和较好的泛化能力,适用于小样本和多类别的图像分割任务。

2.为什么?

U-Net和FCN非常的相似,U-Net比FCN稍晚提出来,但都发表在2015年,和FCN相比,U-Net的第一个特点是完全对称,也就是左边和右边是很类似的,而FCN的decoder相对简单。第二个区别就是skip connection,FCN用的是加操作(summation),U-Net用的是叠操作(concatenation)。这些都是细节,重点是它们的结构用了一个比较经典的思路,也就是编码和解码(encoder-decoder)结构。其实可以将图像->高语义feature map的过程看成编码器,高语义->像素级别的分类score map的过程看作解码器

此外, 由于UNet也和FCN一样, 是全卷积形式, 没有全连接层(即没有固定图的尺寸),所以容易适应很多输入尺寸大小,但并不是所有的尺寸都可以,需要根据网络结构决定
 

3.怎么样?

3.1网络结构

如上图,Unet 网络结构是对称的,形似英文字母 U 所以被称为 Unet。整张图都是由蓝/白色框与各种颜色的箭头组成,其中,蓝/白色框表示 feature map;蓝色箭头表示 3x3 卷积,用于特征提取;灰色箭头表示 skip-connection,用于特征融合;红色箭头表示池化 pooling,用于降低维度;绿色箭头表示上采样 upsample,用于恢复维度;青色箭头表示 1x1 卷积,用于输出结果。其中灰色箭头copy and crop中的copy就是concatenatecrop是为了让两者的长宽一致 。

Encoder 由卷积操作和下采样操作组成,文中所用的卷积结构统一为 3x3 的卷积核,padding 为 0 ,striding 为 1。没有 padding 所以每次卷积之后 feature map 的 H 和 W 变小了,在 skip-connection 时要注意 feature map 的维度(其实也可以将 padding 设置为 1 避免维度不对应问题)

3.2 代码实现

from typing import Dict
import torch
import torch.nn as nn
import torch.nn.functional as F


class DoubleConv(nn.Sequential):
    def __init__(self, in_channels, out_channels, mid_channels=None):
        if mid_channels is None:
            mid_channels = out_channels
        super(DoubleConv, self).__init__(
            nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(mid_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True)
        )


class Down(nn.Sequential):
    def __init__(self, in_channels, out_channels):
        super(Down, self).__init__(
            nn.MaxPool2d(2, stride=2),
            DoubleConv(in_channels, out_channels)
        )


class Up(nn.Module):
    def __init__(self, in_channels, out_channels, bilinear=True):
        super(Up, self).__init__()
        if bilinear:
            self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
            self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
        else:
            self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
            self.conv = DoubleConv(in_channels, out_channels)

    def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:
        x1 = self.up(x1)
        # [N, C, H, W]
        diff_y = x2.size()[2] - x1.size()[2]
        diff_x = x2.size()[3] - x1.size()[3]

        # padding_left, padding_right, padding_top, padding_bottom
        x1 = F.pad(x1, [diff_x // 2, diff_x - diff_x // 2,
                        diff_y // 2, diff_y - diff_y // 2])

        x = torch.cat([x2, x1], dim=1)
        x = self.conv(x)
        return x


class OutConv(nn.Sequential):
    def __init__(self, in_channels, num_classes):
        super(OutConv, self).__init__(
            nn.Conv2d(in_channels, num_classes, kernel_size=1)
        )


class UNet(nn.Module):
    def __init__(self,
                 in_channels: int = 1,
                 num_classes: int = 2,
                 bilinear: bool = True,
                 base_c: int = 64):
        super(UNet, self).__init__()
        self.in_channels = in_channels
        self.num_classes = num_classes
        self.bilinear = bilinear

        self.in_conv = DoubleConv(in_channels, base_c)
        self.down1 = Down(base_c, base_c * 2)
        self.down2 = Down(base_c * 2, base_c * 4)
        self.down3 = Down(base_c * 4, base_c * 8)
        factor = 2 if bilinear else 1
        self.down4 = Down(base_c * 8, base_c * 16 // factor)
        self.up1 = Up(base_c * 16, base_c * 8 // factor, bilinear)
        self.up2 = Up(base_c * 8, base_c * 4 // factor, bilinear)
        self.up3 = Up(base_c * 4, base_c * 2 // factor, bilinear)
        self.up4 = Up(base_c * 2, base_c, bilinear)
        self.out_conv = OutConv(base_c, num_classes)

    def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
        x1 = self.in_conv(x)
        x2 = self.down1(x1)
        x3 = self.down2(x2)
        x4 = self.down3(x3)
        x5 = self.down4(x4)
        x = self.up1(x5, x4)
        x = self.up2(x, x3)
        x = self.up3(x, x2)
        x = self.up4(x, x1)
        logits = self.out_conv(x)

        return {"out": logits}

参考:

语义分割网络 U-Net 详解

Unet网络解析

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/210522.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深度学习 -- 神经网络

1、神经网络的历史 2、 M-P模型 M-P模型是首个通过模仿神经元而形成的模型。在M-P模型中,多个输入节点对应一个输出节点y。每个输入x,乘以相应的连接权重w,然后相加得到输出y。结果之和如果大于阈值h,则输出1,否则输出0。输入和输出均是0或1。 公式2.1: …

【代码】多种调度模式下的光储电站经济性最优 储能容量配置分析matlab/yalmip

程序名称:多种调度模式下的光储电站经济性最优储能容量配置分析 实现平台:matlab-yalmip-cplex/gurobi 代码简介:代码主要做的是一个光储电站经济最优储能容量配置的问题,对光储电站中储能的容量进行优化,以实现经济…

08-中介者模式-C语言实现

中介者模式: Define an object that encapsulates how a set of objects interact.Mediator promotes loose coupling by keeping objects from referring to each other explicitly,and it lets you vary their interaction independently.(用一个中介对…

2243:Knight Moves

文章目录 题目描述思路1. DFS2. BFS3. 动态规划 解题方法1. DFS2. BFS3. 动态规划 题目描述 题目链接 翻译如下: 注:骑士移动是和象棋里的马一样走的是日字型 你的一个朋友正在研究旅行骑士问题 (TKP),你要找到最短的…

结合贝叶斯定理浅谈商业银行员工异常行为排查

1.贝叶斯定理的数学表达 贝叶斯方法依据贝叶斯定理。关于贝叶斯定理解释如下:首先我们设定在事件B条件下,发生事件A的条件概率,即 ,从数学公式上,此条件概率等于事件A与事件B同时发生的概率除以事件B发生的概率。 上述…

VUE语法-(readonly的用法)将数据设置成只读模式

1、功能概述 在Vue中定义一个变量,这个变量的值不允许被修改,核心是通过readonly设置成只读。 如果不会使用ref和reactive响应式数据参考如下博客: https://blog.csdn.net/tangshiyilang/article/details/134701103 2、具体实现 如下案例…

轻量级万物分割SAM模型——MobileSAM安装实测摘要

目录 0、前言1、准备工作安装python环境说明安装说明 运行测试app安装依赖修改代码 2、实际测试效果自带图片测试其它图片测试1其它图片测试2 总结 0、前言 本文将介绍一种轻量级万物分割SAM模型——MobileSAM的安装和实测情况。SAM是meta公司的一种图像分割大模型&#xff0c…

摩根士丹利:人工智能推动增长

摩根士丹利(NYSE:MS)将人工智能战略整合到其财富管理业务中,标志着竞争性金融格局迈出了变革性的一步。该公司的人工智能计划,包括与 OpenAI 合作开发人工智能聊天机器人,促进了其财富部门的显着增长。值得…

VSCode 开发C/C++实用插件分享——codegeex

VSCode 开发C/C实用插件分享——codegeex 一、codegeex 一、codegeex CodeGeeX 智能编程助手是一款编程插件,CodeGeeX支持多种主流IDE,如VS Code、IntelliJ IDEA、PyCharm、Vim等,同时,支持Python、Java、C/C、JavaScript、Go等多…

C++学习之路(十六)C++ 用Qt5实现一个工具箱(为屏幕颜色提取功能增加一个点击复制的功能)- 示例代码拆分讲解

上篇文章,我们用 Qt5 实现了在小工具箱中添加了《颜色代码转换和屏幕颜色提取功能》功能。今天我们把屏幕颜色提取的功能再扩展一下,让它可以点击复制吧。下面我们就来看看如何来规划开发这样的小功能并且添加到我们的工具箱中吧。 老规矩,先…

CKafka 一站式搭建数据流转链路,助力长城车联网平台降低运维成本

关于长城智能新能源 长城汽车是一家全球化智能科技公司,业务包括汽车及零部件设计、研发、生产、销售和服务,旗下拥有魏牌、哈弗、坦克、欧拉及长城皮卡。2022年,长城汽车全年销售1,067,523辆,连续7年销量超100万辆。长城汽车面向…

mysql手动事务

目录 🚀🚀 简要 手动事务使用案例 事务的特性 事务的隔离级别 脏读 不可重复读 幻读 查看事务隔离级别 设置隔离级别 🫡🫡 简要 mysq事务是自动提交的, 例如insert, update语句等 如下: 想要手动设置mysql事务就需…

操作系统导论——第36章 I/O设备

1. 系统架构 之所以使用分层,这是由于成本和效率之间的平衡 2. 标准设备 接口:向系统其他部分展现的硬件接口 内部结构:设备相关特定实现,几个芯片,CPU和通用内存等 3. 标准协议 While (STATUS BYSY); a、轮询设…

第三节:提供者、消费者、Eureka

一、 提供者 消费者(就是个说法、定义,以防别人叭叭时听不懂) 服务提供者:业务中被其他微服务调用的服务。(提供接口给其他服务调用)服务消费者:业务中调用其他微服务的服务。(调用…

Windows系统下Elasticsearch-7.15.2安装

一、环境 此次笔记使用的运行环境以及软件版本 系统:WIN10 JDK版本:1.8 Elasticsearch版本:7.15.2 elasticsearch-head版本:最新 IK分词器版本:7.15.2 Kibana版本:7.15.2 二、Elasticsearch基本知识 2.1 介绍…

腾讯云优惠券领取入口及使用指南

腾讯云作为国内领先的云计算服务商,提供了丰富的云产品和服务。为了帮助用户更好地享受腾讯云的服务,腾讯云推出了各种优惠券,包括新用户优惠、老用户优惠等。本文将为大家介绍腾讯云优惠券的领取入口和使用指南。 一、腾讯云优惠券领取入口 …

Certum SSL证书

为了确保在线交易的安全性,以及保护敏感信息免受网络威胁,使用SSL(Secure Socket Layer)证书成为了必要选择。其中,波兰认证机构Certum提供的SSL证书以其高度的安全性和可信赖性,得到了全球用户的广泛认可。…

蓝桥杯物联网竞赛_STM32L071_6_RTC显示

作用: RTC在STM32微控制器中通常由一个独立的低功耗晶振和相关的寄存器组成。它可以独立于主处理器运行,即使在系统电源关闭的情况下(需要备用纽扣电池),也能继续计时和记录日期。注意:RTC是芯片内部的功能,并没有和G…

网络运维与网络安全 学习笔记2023.12.2

网络运维与网络安全 学习笔记 第三十三天 今日目标 Linux系统综述、部署本地Linux、配置Linux网络 SSH远程控制、远程文档管理、选购ECS云主机 Linux系统综述 Linux是一种操作系统 Linux之父,Linus Torwalds 1991年10月,发布0.02版(第一…

OOM了?物理内存不够了?试试这个方法来提升内存容量,不花钱的

通过增加虚拟内存来提高内存使用 本文解决的实际问题: 当我们物理内存小的时候,会出现OOM,然后服务自动死掉的情况。因为物理内存大小是固定的,有没有其他好的办法来解决呢?这里我们可以适当调整Linux的虚拟内存来协作…