CKafka 一站式搭建数据流转链路,助力长城车联网平台降低运维成本

关于长城智能新能源

长城汽车是一家全球化智能科技公司,业务包括汽车及零部件设计、研发、生产、销售和服务,旗下拥有魏牌、哈弗、坦克、欧拉及长城皮卡。2022年,长城汽车全年销售1,067,523辆,连续7年销量超100万辆。长城汽车面向全球用户提供智能、绿色出行服务,加速向全球化智能科技公司进阶,智能化车型渗透率达86.17%,车联网作为智能化两大应用方向之一,在这个过程中快速发展。

长城车联网平台涵盖车内总线数据上报、远程、车机配置下发、推送文件、推送消息、运营关怀等全新车联网业务,实现车机端和业务平台解耦并高效完成业务对接整合。

主要场景包括:

● 车端数据上报——电机、位置、发动机、整车数据、电池,报警等,通过 tbox 上报车联网平台,针对上报数据进行实时数据处理、计算、推理,以便提供车况查询、告警等智能化服务。

● 远程控制——手机 APP/智能设备集成车联网平台能力,实现远控、诊断。

以下是车联网平台架构图(示意)。

image.png

车联网平台架构图(示意)

爆炸式增长带来的挑战

车联网平台目前已接入数百万辆车,峰值在线达百万辆。车端上报信号数据量大、上传频率高,数据呈爆炸式增长,海量数据实时处理与分析面临严重挑战。

对系统提出以下要求:

1、处理时效要求高

查询时效性、分析决策、监控告警

2、数据量大,稳定

分布式、平行扩展、低耦合、高可用性、数据安全

物联网设备通常性能比较弱,很难去使用流行的传统的消息中间件。基本上 IOT 设备里面,都是用 MQTT 来去做消息的传输。但 MQTT 存在以下缺点:

1、只是排队,而不是流处理

2、无法处理使用量激增(没有缓冲)

3、大多数 MQTT 代理不支持高可伸缩性

4、异步处理(通常脱机很长时间)

5、缺乏与企业其他部分的良好集成

6、单一基础设施(通常位于边缘)

7、不能对事件进行再处理

只有 MQTT 数据有可能来不及处理就被丢掉,同时也满足不了海量数据实时处理与分析带来的挑战。

解决方案

作为分布式消息队列的 Kafka,因多分区、零拷贝、批处理、顺序读写等设计和特性能够实现高吞吐量的数据处理。同时作为一个事件流平台,它结合消息传递、存储和数据处理来构建高度可伸缩、可靠、安全和实时的基础设施。从车联网的角度来看具有以下优点:

1、流处理,不仅仅是排队

2、高吞吐量

3、大规模的

4、高可用性

5、长期存储和缓冲

6、再处理的事件

7、与企业的其他部分良好集成

Kafka 和 MQTT 的结合是构建可伸缩、可靠和安全的车联网基础设施的天成之选,因此长城车联网平台选择 Kafka 作为数据处理核心组件。

MQTT 的 Broker 集群后对接 Kafka 集群,先通过 MQTT 从设备采集数据,采集后再转储到 Kafka ,供后续引擎分析处理。即使处理的速度没有采集的速度快,数据也不会丢失,因为已转储到 Kafka ,长城正是用这种方案实现了车联网设备状态的持续监控和分析。

但自建 Kafka 带来日益加重的研发和运维成本:

首先,解决问题的研发运维人员需要具备扎实的计算机功底(熟悉计算机网络、IO 等),需对 Kafka 的底层原理、各种配置参数项等具有深刻理解,可以进行 Kafka 集群参数调优,快速处理突发故障、恢复集群抖动和动态进行集群扩缩容等。

其次,一方面需要投入更多的人力、物力成本,另一方面 需要时刻监控集群的健康状况,及时排除问题以保障业务的稳定运行。

最后,自建消息队列在扩展性、可维护性能方面存在不足,当业务的消息数据量到达一定程度后,自建的消息队列集群就会引发各种各样的问题,问题的解决又带来很大的挑战。

举几个简单例子:

● 集群发生异常时,因为监控指标不全,日志输出不合理等原因,排查定位问题困难。只能靠暂停业务、重启 Kafka 集群解决问题,对业务影响较大。

● Kafka 的集群扩容复杂度高,在业务高峰进行迁移的时候,出现分区迁移卡死。

● 自建集群的 ZK 运维难度大,ZK 负载高,导致ZK频繁断连。

与腾讯云技术团队沟通, CKafka(Cloud Kafka)作为云上Kafka版本,具有完善的监控告警系统和运维工单系统,在性能、扩展性、业务安全保障、运维等方面具有很强优势,可以在享受低成本、高性能、丰富功能的同时,免除繁琐运维工作。

车联网平台利用高性能、高吞吐、可拓展的分布式消息队列引擎 CKafka,实现业务解耦、削峰填谷、数据的异步处理,达到业务的高可靠性。

数据上报场景

关于长城智能新能源

长城汽车是一家全球化智能科技公司,业务包括汽车及零部件设计、研发、生产、销售和服务,旗下拥有魏牌、哈弗、坦克、欧拉及长城皮卡。2022年,长城汽车全年销售1,067,523辆,连续7年销量超100万辆。长城汽车面向全球用户提供智能、绿色出行服务,加速向全球化智能科技公司进阶,智能化车型渗透率达86.17%,车联网作为智能化两大应用方向之一,在这个过程中快速发展。

长城车联网平台涵盖车内总线数据上报、远程、车机配置下发、推送文件、推送消息、运营关怀等全新车联网业务,实现车机端和业务平台解耦并高效完成业务对接整合。

主要场景包括:

● 车端数据上报——电机、位置、发动机、整车数据、电池,报警等,通过 tbox 上报车联网平台,针对上报数据进行实时数据处理、计算、推理,以便提供车况查询、告警等智能化服务。

● 远程控制——手机 APP/智能设备集成车联网平台能力,实现远控、诊断。

以下是车联网平台架构图(示意)。

image.png

车联网平台架构图(示意)

爆炸式增长带来的挑战

车联网平台目前已接入数百万辆车,峰值在线达百万辆。车端上报信号数据量大、上传频率高,数据呈爆炸式增长,海量数据实时处理与分析面临严重挑战。

对系统提出以下要求:

1、处理时效要求高

查询时效性、分析决策、监控告警

2、数据量大,稳定

分布式、平行扩展、低耦合、高可用性、数据安全

物联网设备通常性能比较弱,很难去使用流行的传统的消息中间件。基本上 IOT 设备里面,都是用 MQTT 来去做消息的传输。但 MQTT 存在以下缺点:

1、只是排队,而不是流处理

2、无法处理使用量激增(没有缓冲)

3、大多数 MQTT 代理不支持高可伸缩性

4、异步处理(通常脱机很长时间)

5、缺乏与企业其他部分的良好集成

6、单一基础设施(通常位于边缘)

7、不能对事件进行再处理

只有 MQTT 数据有可能来不及处理就被丢掉,同时也满足不了海量数据实时处理与分析带来的挑战。

解决方案

作为分布式消息队列的 Kafka,因多分区、零拷贝、批处理、顺序读写等设计和特性能够实现高吞吐量的数据处理。同时作为一个事件流平台,它结合消息传递、存储和数据处理来构建高度可伸缩、可靠、安全和实时的基础设施。从车联网的角度来看具有以下优点:

1、流处理,不仅仅是排队

2、高吞吐量

3、大规模的

4、高可用性

5、长期存储和缓冲

6、再处理的事件

7、与企业的其他部分良好集成

Kafka 和 MQTT 的结合是构建可伸缩、可靠和安全的车联网基础设施的天成之选,因此长城车联网平台选择 Kafka 作为数据处理核心组件。

MQTT 的 Broker 集群后对接 Kafka 集群,先通过 MQTT 从设备采集数据,采集后再转储到 Kafka ,供后续引擎分析处理。即使处理的速度没有采集的速度快,数据也不会丢失,因为已转储到 Kafka ,长城正是用这种方案实现了车联网设备状态的持续监控和分析。

但自建 Kafka 带来日益加重的研发和运维成本:

首先,解决问题的研发运维人员需要具备扎实的计算机功底(熟悉计算机网络、IO 等),需对 Kafka 的底层原理、各种配置参数项等具有深刻理解,可以进行 Kafka 集群参数调优,快速处理突发故障、恢复集群抖动和动态进行集群扩缩容等。

其次,一方面需要投入更多的人力、物力成本,另一方面 需要时刻监控集群的健康状况,及时排除问题以保障业务的稳定运行。

最后,自建消息队列在扩展性、可维护性能方面存在不足,当业务的消息数据量到达一定程度后,自建的消息队列集群就会引发各种各样的问题,问题的解决又带来很大的挑战。

举几个简单例子:

● 集群发生异常时,因为监控指标不全,日志输出不合理等原因,排查定位问题困难。只能靠暂停业务、重启 Kafka 集群解决问题,对业务影响较大。

● Kafka 的集群扩容复杂度高,在业务高峰进行迁移的时候,出现分区迁移卡死。

● 自建集群的 ZK 运维难度大,ZK 负载高,导致ZK频繁断连。

与腾讯云技术团队沟通, CKafka(Cloud Kafka)作为云上Kafka版本,具有完善的监控告警系统和运维工单系统,在性能、扩展性、业务安全保障、运维等方面具有很强优势,可以在享受低成本、高性能、丰富功能的同时,免除繁琐运维工作。

车联网平台利用高性能、高吞吐、可拓展的分布式消息队列引擎 CKafka,实现业务解耦、削峰填谷、数据的异步处理,达到业务的高可靠性。

数据上报场景

关于长城智能新能源

长城汽车是一家全球化智能科技公司,业务包括汽车及零部件设计、研发、生产、销售和服务,旗下拥有魏牌、哈弗、坦克、欧拉及长城皮卡。2022年,长城汽车全年销售1,067,523辆,连续7年销量超100万辆。长城汽车面向全球用户提供智能、绿色出行服务,加速向全球化智能科技公司进阶,智能化车型渗透率达86.17%,车联网作为智能化两大应用方向之一,在这个过程中快速发展。

长城车联网平台涵盖车内总线数据上报、远程、车机配置下发、推送文件、推送消息、运营关怀等全新车联网业务,实现车机端和业务平台解耦并高效完成业务对接整合。

主要场景包括:

● 车端数据上报——电机、位置、发动机、整车数据、电池,报警等,通过 tbox 上报车联网平台,针对上报数据进行实时数据处理、计算、推理,以便提供车况查询、告警等智能化服务。

● 远程控制——手机 APP/智能设备集成车联网平台能力,实现远控、诊断。

以下是车联网平台架构图(示意)。

image.png

车联网平台架构图(示意)

爆炸式增长带来的挑战

车联网平台目前已接入数百万辆车,峰值在线达百万辆。车端上报信号数据量大、上传频率高,数据呈爆炸式增长,海量数据实时处理与分析面临严重挑战。

对系统提出以下要求:

1、处理时效要求高

查询时效性、分析决策、监控告警

2、数据量大,稳定

分布式、平行扩展、低耦合、高可用性、数据安全

物联网设备通常性能比较弱,很难去使用流行的传统的消息中间件。基本上 IOT 设备里面,都是用 MQTT 来去做消息的传输。但 MQTT 存在以下缺点:

1、只是排队,而不是流处理

2、无法处理使用量激增(没有缓冲)

3、大多数 MQTT 代理不支持高可伸缩性

4、异步处理(通常脱机很长时间)

5、缺乏与企业其他部分的良好集成

6、单一基础设施(通常位于边缘)

7、不能对事件进行再处理

只有 MQTT 数据有可能来不及处理就被丢掉,同时也满足不了海量数据实时处理与分析带来的挑战。

解决方案

作为分布式消息队列的 Kafka,因多分区、零拷贝、批处理、顺序读写等设计和特性能够实现高吞吐量的数据处理。同时作为一个事件流平台,它结合消息传递、存储和数据处理来构建高度可伸缩、可靠、安全和实时的基础设施。从车联网的角度来看具有以下优点:

1、流处理,不仅仅是排队

2、高吞吐量

3、大规模的

4、高可用性

5、长期存储和缓冲

6、再处理的事件

7、与企业的其他部分良好集成

Kafka 和 MQTT 的结合是构建可伸缩、可靠和安全的车联网基础设施的天成之选,因此长城车联网平台选择 Kafka 作为数据处理核心组件。

MQTT 的 Broker 集群后对接 Kafka 集群,先通过 MQTT 从设备采集数据,采集后再转储到 Kafka ,供后续引擎分析处理。即使处理的速度没有采集的速度快,数据也不会丢失,因为已转储到 Kafka ,长城正是用这种方案实现了车联网设备状态的持续监控和分析。

但自建 Kafka 带来日益加重的研发和运维成本:

首先,解决问题的研发运维人员需要具备扎实的计算机功底(熟悉计算机网络、IO 等),需对 Kafka 的底层原理、各种配置参数项等具有深刻理解,可以进行 Kafka 集群参数调优,快速处理突发故障、恢复集群抖动和动态进行集群扩缩容等。

其次,一方面需要投入更多的人力、物力成本,另一方面 需要时刻监控集群的健康状况,及时排除问题以保障业务的稳定运行。

最后,自建消息队列在扩展性、可维护性能方面存在不足,当业务的消息数据量到达一定程度后,自建的消息队列集群就会引发各种各样的问题,问题的解决又带来很大的挑战。

举几个简单例子:

● 集群发生异常时,因为监控指标不全,日志输出不合理等原因,排查定位问题困难。只能靠暂停业务、重启 Kafka 集群解决问题,对业务影响较大。

● Kafka 的集群扩容复杂度高,在业务高峰进行迁移的时候,出现分区迁移卡死。

● 自建集群的 ZK 运维难度大,ZK 负载高,导致ZK频繁断连。

与腾讯云技术团队沟通, CKafka(Cloud Kafka)作为云上Kafka版本,具有完善的监控告警系统和运维工单系统,在性能、扩展性、业务安全保障、运维等方面具有很强优势,可以在享受低成本、高性能、丰富功能的同时,免除繁琐运维工作。

车联网平台利用高性能、高吞吐、可拓展的分布式消息队列引擎 CKafka,实现业务解耦、削峰填谷、数据的异步处理,达到业务的高可靠性。

数据上报场景

image.png

车辆产生的实时数据(如 GPS 位置、速度、油耗等)通过 CKafka 进行收集、传输、分发,实现一份数据多个流向满足多个场景需求。

实时计算部分

通过 Flink 提供的 Kafka 连接器,流数据经过 Flink 算子进行处理落入高性能列式数据库Clickhouse,用于实时更新数据的分析。该流程可提供一次精确的处理语义,同时 CKafka 多分区提供更高的吞吐量,减少数据倾斜和热点。

车辆故障、异常行为等车辆的状态数据,通过实时分析可以快速发现并处理车辆的问题。

离线分析部分

通过 Flume 等日志收集系统,可将 CKafka 中海量日志数据进行高效收集、聚合、移动,最后存储到 HDFS 或者 Hbase。在生产处理环节中,当生产与处理速度不一致时,CKafka 可以充当缓存角色。 拥有 Partition 结构以及采用 Append 追加数据,使 CKafka 具有优秀的吞吐能力;同时其拥有 Replication 结构,使 CKafka 具有很高的容错性。

车辆数据经过离线分析和挖掘,分析结果可以用于优化车辆性能、提高驾驶安全、降低能耗等。

指令下发场景
在这里插入图片描述
在指令下发场景中,CKafka 承接远程指令和响应结果,为上下游多个系统提供异步接耦、削峰填谷的能力,同时消息持久化及可回溯的产品特性能保障指令状态的最终一致性。

使用 CKafka 后的业务收益

与自建 Kafka 相比,CKafka 有完善的监控告警系统和运维工单系统,CKafka 研发专家随时答疑解惑,迅速解决客户问题,省心省力。

CKafka 在性能、扩展性、业务安全保障、运维等方面具有超强优势,让客户在享受低成本、超强功能的同时,免除繁琐运维工作。当 CKafka 集群的流量和磁盘容量超过告警阈值,后端会及时扩容设备对客户端无感知,解决开源 Kafka 长期以来迁移数据的痛点,配置升级无感知,轻松应对业务高峰。

除了可拓展性之外,Ckafka 支持同地域自定义多可用区部署,跨地域灾备,提升业务容灾能力。

未来展望

针对降低存储成本、快速应对突发流量峰值的两个核心诉求,CKafka 将演进按量存储形态,并推出弹性带宽能力。

● 按量存储

按照实际使用存储空间弹性计费,无需考虑预留存储空间,更加灵活易运维,且成本更低。

● 弹性带宽

在既定带宽规格上,提供一定范围的上浮空间(即弹性能力)。

若遇到突发的流量毛刺,集群不会触发限流,而是在规定范围内弹性扩缩容,超出原有带宽部分的流量按量计费。

通过合理的架构设计和灵活的产品能力,CKafka 帮助用户在云上以更低成本托管高吞吐、高可用、易用免运维的消息队列 Kafka 服务,一站式搭建数据流转链路。后续也期待与出行行业客户有更多合作,分享更多云上最佳实践。

车辆产生的实时数据(如 GPS 位置、速度、油耗等)通过 CKafka 进行收集、传输、分发,实现一份数据多个流向满足多个场景需求。

实时计算部分

通过 Flink 提供的 Kafka 连接器,流数据经过 Flink 算子进行处理落入高性能列式数据库Clickhouse,用于实时更新数据的分析。该流程可提供一次精确的处理语义,同时 CKafka 多分区提供更高的吞吐量,减少数据倾斜和热点。

车辆故障、异常行为等车辆的状态数据,通过实时分析可以快速发现并处理车辆的问题。

离线分析部分

通过 Flume 等日志收集系统,可将 CKafka 中海量日志数据进行高效收集、聚合、移动,最后存储到 HDFS 或者 Hbase。在生产处理环节中,当生产与处理速度不一致时,CKafka 可以充当缓存角色。 拥有 Partition 结构以及采用 Append 追加数据,使 CKafka 具有优秀的吞吐能力;同时其拥有 Replication 结构,使 CKafka 具有很高的容错性。

车辆数据经过离线分析和挖掘,分析结果可以用于优化车辆性能、提高驾驶安全、降低能耗等。

指令下发场景

在这里插入图片描述

在指令下发场景中,CKafka 承接远程指令和响应结果,为上下游多个系统提供异步接耦、削峰填谷的能力,同时消息持久化及可回溯的产品特性能保障指令状态的最终一致性。

使用 CKafka 后的业务收益

与自建 Kafka 相比,CKafka 有完善的监控告警系统和运维工单系统,CKafka 研发专家随时答疑解惑,迅速解决客户问题,省心省力。

CKafka 在性能、扩展性、业务安全保障、运维等方面具有超强优势,让客户在享受低成本、超强功能的同时,免除繁琐运维工作。当 CKafka 集群的流量和磁盘容量超过告警阈值,后端会及时扩容设备对客户端无感知,解决开源 Kafka 长期以来迁移数据的痛点,配置升级无感知,轻松应对业务高峰。

除了可拓展性之外,Ckafka 支持同地域自定义多可用区部署,跨地域灾备,提升业务容灾能力。

未来展望

针对降低存储成本、快速应对突发流量峰值的两个核心诉求,CKafka 将演进按量存储形态,并推出弹性带宽能力。

● 按量存储

按照实际使用存储空间弹性计费,无需考虑预留存储空间,更加灵活易运维,且成本更低。

● 弹性带宽

在既定带宽规格上,提供一定范围的上浮空间(即弹性能力)。

若遇到突发的流量毛刺,集群不会触发限流,而是在规定范围内弹性扩缩容,超出原有带宽部分的流量按量计费。

通过合理的架构设计和灵活的产品能力,CKafka 帮助用户在云上以更低成本托管高吞吐、高可用、易用免运维的消息队列 Kafka 服务,一站式搭建数据流转链路。后续也期待与出行行业客户有更多合作,分享更多云上最佳实践。

车辆产生的实时数据(如 GPS 位置、速度、油耗等)通过 CKafka 进行收集、传输、分发,实现一份数据多个流向满足多个场景需求。

实时计算部分

通过 Flink 提供的 Kafka 连接器,流数据经过 Flink 算子进行处理落入高性能列式数据库Clickhouse,用于实时更新数据的分析。该流程可提供一次精确的处理语义,同时 CKafka 多分区提供更高的吞吐量,减少数据倾斜和热点。

车辆故障、异常行为等车辆的状态数据,通过实时分析可以快速发现并处理车辆的问题。

离线分析部分

通过 Flume 等日志收集系统,可将 CKafka 中海量日志数据进行高效收集、聚合、移动,最后存储到 HDFS 或者 Hbase。在生产处理环节中,当生产与处理速度不一致时,CKafka 可以充当缓存角色。 拥有 Partition 结构以及采用 Append 追加数据,使 CKafka 具有优秀的吞吐能力;同时其拥有 Replication 结构,使 CKafka 具有很高的容错性。

车辆数据经过离线分析和挖掘,分析结果可以用于优化车辆性能、提高驾驶安全、降低能耗等。

指令下发场景

image.png

在指令下发场景中,CKafka 承接远程指令和响应结果,为上下游多个系统提供异步接耦、削峰填谷的能力,同时消息持久化及可回溯的产品特性能保障指令状态的最终一致性。

使用 CKafka 后的业务收益

与自建 Kafka 相比,CKafka 有完善的监控告警系统和运维工单系统,CKafka 研发专家随时答疑解惑,迅速解决客户问题,省心省力。

CKafka 在性能、扩展性、业务安全保障、运维等方面具有超强优势,让客户在享受低成本、超强功能的同时,免除繁琐运维工作。当 CKafka 集群的流量和磁盘容量超过告警阈值,后端会及时扩容设备对客户端无感知,解决开源 Kafka 长期以来迁移数据的痛点,配置升级无感知,轻松应对业务高峰。

除了可拓展性之外,Ckafka 支持同地域自定义多可用区部署,跨地域灾备,提升业务容灾能力。

未来展望

针对降低存储成本、快速应对突发流量峰值的两个核心诉求,CKafka 将演进按量存储形态,并推出弹性带宽能力。

● 按量存储

按照实际使用存储空间弹性计费,无需考虑预留存储空间,更加灵活易运维,且成本更低。

● 弹性带宽

在既定带宽规格上,提供一定范围的上浮空间(即弹性能力)。

若遇到突发的流量毛刺,集群不会触发限流,而是在规定范围内弹性扩缩容,超出原有带宽部分的流量按量计费。

通过合理的架构设计和灵活的产品能力,CKafka 帮助用户在云上以更低成本托管高吞吐、高可用、易用免运维的消息队列 Kafka 服务,一站式搭建数据流转链路。后续也期待与出行行业客户有更多合作,分享更多云上最佳实践。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/210508.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

mysql手动事务

目录 🚀🚀 简要 手动事务使用案例 事务的特性 事务的隔离级别 脏读 不可重复读 幻读 查看事务隔离级别 设置隔离级别 🫡🫡 简要 mysq事务是自动提交的, 例如insert, update语句等 如下: 想要手动设置mysql事务就需…

操作系统导论——第36章 I/O设备

1. 系统架构 之所以使用分层,这是由于成本和效率之间的平衡 2. 标准设备 接口:向系统其他部分展现的硬件接口 内部结构:设备相关特定实现,几个芯片,CPU和通用内存等 3. 标准协议 While (STATUS BYSY); a、轮询设…

第三节:提供者、消费者、Eureka

一、 提供者 消费者(就是个说法、定义,以防别人叭叭时听不懂) 服务提供者:业务中被其他微服务调用的服务。(提供接口给其他服务调用)服务消费者:业务中调用其他微服务的服务。(调用…

Windows系统下Elasticsearch-7.15.2安装

一、环境 此次笔记使用的运行环境以及软件版本 系统:WIN10 JDK版本:1.8 Elasticsearch版本:7.15.2 elasticsearch-head版本:最新 IK分词器版本:7.15.2 Kibana版本:7.15.2 二、Elasticsearch基本知识 2.1 介绍…

腾讯云优惠券领取入口及使用指南

腾讯云作为国内领先的云计算服务商,提供了丰富的云产品和服务。为了帮助用户更好地享受腾讯云的服务,腾讯云推出了各种优惠券,包括新用户优惠、老用户优惠等。本文将为大家介绍腾讯云优惠券的领取入口和使用指南。 一、腾讯云优惠券领取入口 …

Certum SSL证书

为了确保在线交易的安全性,以及保护敏感信息免受网络威胁,使用SSL(Secure Socket Layer)证书成为了必要选择。其中,波兰认证机构Certum提供的SSL证书以其高度的安全性和可信赖性,得到了全球用户的广泛认可。…

蓝桥杯物联网竞赛_STM32L071_6_RTC显示

作用: RTC在STM32微控制器中通常由一个独立的低功耗晶振和相关的寄存器组成。它可以独立于主处理器运行,即使在系统电源关闭的情况下(需要备用纽扣电池),也能继续计时和记录日期。注意:RTC是芯片内部的功能,并没有和G…

网络运维与网络安全 学习笔记2023.12.2

网络运维与网络安全 学习笔记 第三十三天 今日目标 Linux系统综述、部署本地Linux、配置Linux网络 SSH远程控制、远程文档管理、选购ECS云主机 Linux系统综述 Linux是一种操作系统 Linux之父,Linus Torwalds 1991年10月,发布0.02版(第一…

OOM了?物理内存不够了?试试这个方法来提升内存容量,不花钱的

通过增加虚拟内存来提高内存使用 本文解决的实际问题: 当我们物理内存小的时候,会出现OOM,然后服务自动死掉的情况。因为物理内存大小是固定的,有没有其他好的办法来解决呢?这里我们可以适当调整Linux的虚拟内存来协作…

FreeRTOS第2天:

1. 二值信号量简介(386.11) 什么是信号量? 信号量(Semaphore),是在多任务环境下使用的一种机制,是可以用来保证两个或多个关键代码段不被并 发调用。信号量这个名字,我们可以把它拆…

Android BT HCI分析简介

对于蓝牙开发者来说,通过HCI log可以帮助我们更好地分析问题,理解蓝牙协议,就好像网络开发一定要会使用Wireshark分析网络协议一样。 本篇主要介绍HCI log的作用、如何抓取一份HCI log,并结合一个实际的例子来说明如何分析HCI log…

eclipse中设置自动补齐代码

eclipse中设置自动补齐代码 01 在window里找到preference 02 在preference里搜索content assist 03 在Java的content assist设置 设置为.abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ 04 apply and close即可

mysql在linux环境下安装(rpm)以及初始化后的登录配置

注:该安装步骤转载于CSDN,下方配置为原创 按照图片安装并初始化完成MySQL等操作后进行; 安装对于rpm包集合 1-查看安装情况(有4个路径) whereis mysql 2-查看服务状态 systemctl status mysql 3-初始化数据库 mysqld --initial…

mybatis源码(五)springboot pagehelper实现查询分页

1、背景 springboot的pagehelper插件能够实现对mybatis查询的分页管理,而且在使用时只需要提前声明即可,不需要修改已有的查询语句。使用如下: 之前对这个功能一直很感兴趣,但是一直没完整看过,今天准备详细梳理下。按…

施人玫瑰手留余香和影像组学、医学人工智能未来漫谈

今天收到进阶班学员的留言: 提示:本文有硬核软文嫌疑,请慎重阅读。“ 我用您给我们讲的CLEAR,与一个审稿人进行了battle。有理有据。评估下来,我感觉我们的文章还是挺符合CLEAR的。” 我从来不排斥在商言商&#xff0…

初识数据结构及复杂度

1、数据结构 数据结构数据结构(描述和组织数据),Java会把一些数据结构封装起来,在java中数据结构叫做集合。 数据结构:(data structer)是计算机存储、组织数据的方式,指相互之间存在…

使用 mtcnn 和 facenet 进行人脸识别

一、前言 人脸识别目前有比较多的应用了,比如门禁系统,手机的人脸解锁等等,今天,我们也来实现一个简单的人脸识别。 二、思维导图 三、详细步骤 3.1 准备 3.1.1 facenet 权重文件下载 下载地址:https://drive.goo…

用户反馈组件实现(Vue3+ElementPlus)含图片拖拽上传

用户反馈组件实现&#xff08;Vue3ElementPlus&#xff09;含图片拖拽上传 1. 页面效果1.1 正常展示1.2 鼠标悬浮1.3 表单 2. 代码部分1.2 html、ts1.2 less部分 3. 编码过程遇到的问题 1. 页面效果 1.1 正常展示 1.2 鼠标悬浮 1.3 表单 2. 代码部分 1.2 html、ts <templ…

虚拟机备份数据自动化验证原理

备份数据成功备份下来了&#xff0c;但是备份数据是否可用可靠&#xff1f;对于这个问题&#xff0c;最好最可靠的方法是将备份数据实际恢复出来验证。 但是这样的方法&#xff0c;不仅费时费力&#xff0c;而且需要随着备份数据的定期产生&#xff0c;还应当定期做备份数据验…