文章目录
- 竞赛链接
- Q1:2917. 找出数组中的 K-or 值
- 竞赛时代码——按题意模拟
- Q2:2918. 数组的最小相等和
- 竞赛时代码——分类讨论
- Q3:2919. 使数组变美的最小增量运算数⭐⭐⭐
- 竞赛时代码——动态规划
- 解法2——记忆化搜索 翻译成递推
- Q4:2920. 收集所有金币可获得的最大积分⭐⭐⭐⭐⭐🐂
- 解法1——自顶向下(记忆化搜索)
- 解法2——自底向上
- 成绩记录
竞赛链接
https://leetcode.cn/contest/weekly-contest-369/
Q1:2917. 找出数组中的 K-or 值
https://leetcode.cn/problems/find-the-k-or-of-an-array/description/
提示:
1 <= nums.length <= 50
0 <= nums[i] < 2^31
1 <= k <= nums.length
竞赛时代码——按题意模拟
class Solution {
public int findKOr(int[] nums, int k) {
int ans = 0;
for (int i = 0; i < 31; ++i) {
int c = 0;
for (int x: nums) {
if ((x >> i & 1) == 1) c++;
}
if (c >= k) ans |= 1 << i;
}
return ans;
}
}
Q2:2918. 数组的最小相等和
https://leetcode.cn/problems/minimum-equal-sum-of-two-arrays-after-replacing-zeros/description/
提示:
1 <= nums1.length, nums2.length <= 10^5
0 <= nums1[i], nums2[i] <= 10^6
竞赛时代码——分类讨论
class Solution {
public long minSum(int[] nums1, int[] nums2) {
long s1 = 0, s2 = 0;
int cnt1 = 0, cnt2 = 0;
for (int x: nums1) {
s1 += x;
if (x == 0) cnt1++;
}
for (int x: nums2) {
s2 += x;
if (x == 0) cnt2++;
}
if (s1 < s2 + cnt2 && cnt1 == 0) return -1;
if (s1 + cnt1 > s2 && cnt2 == 0) return -1;
return Math.max(s1 + cnt1, s2 + cnt2);
}
}
Q3:2919. 使数组变美的最小增量运算数⭐⭐⭐
https://leetcode.cn/problems/minimum-increment-operations-to-make-array-beautiful/description/
提示:
3 <= n == nums.length <= 10^5
0 <= nums[i] <= 10^9
0 <= k <= 10^9
竞赛时代码——动态规划
写的有点丑陋,但好歹是过了。
class Solution {
public long minIncrementOperations(int[] nums, int k) {
int n = nums.length;
long[][] dp = new long[n + 1][2]; // dp[i][j]表示到第i个位置,选或不选且满足条件时的最小增量
for (int i = 0; i <= n; ++i) Arrays.fill(dp[i], Long.MAX_VALUE);
dp[0][0] = 0;
dp[1][1] = Math.max(0, k - nums[0]);
for (int i = 1; i <= n; ++i) {
long x = nums[i - 1];
if (i - 1 >= 0) { // 前一个
dp[i][0] = Math.min(dp[i][0], dp[i - 1][1]);
dp[i][1] = Math.min(dp[i][1], Math.min(dp[i - 1][0], dp[i - 1][1]) + Math.max(0, k - x));
}
if (i - 2 >= 0) { // 前两个
dp[i][0] = Math.min(dp[i][0], dp[i - 2][1]);
if (i - 3 >= 0) dp[i][1] = Math.min(dp[i][1], Math.min(dp[i - 2][1], i - 3 == 0? 0: dp[i - 3][1]) + Math.max(0, k - x));
else dp[i][1] = Math.min(dp[i][1], Math.min(dp[i - 2][1], dp[i - 2][0]) + Math.max(0, k - x));
}
}
if (dp[n][0] > dp[n][1]) return dp[n][1];
return dp[n][0];
}
}
解法2——记忆化搜索 翻译成递推
https://leetcode.cn/problems/minimum-increment-operations-to-make-array-beautiful/solutions/2503157/qiao-miao-she-ji-zhuang-tai-xuan-huo-bu-8547u/
dfs(i,j)表示前0~i个数字,且后面有j个不到k的数字,此时的最小花费
class Solution {
int n, k;
int[] nums;
long[][] memo;
public long minIncrementOperations(int[] nums, int k) {
n = nums.length;
this.k = k;
this.nums = nums;
memo = new long[n][3];
for (long[] m: memo) Arrays.fill(m, -1);
return dfs(n - 1, 0);
}
// dfs(i,j)表示前0~i个数字,且后面有j个不到k的数字,此时的最小花费
public long dfs(int i, int j) {
if (i < 0) return 0;
if (memo[i][j] != -1) return memo[i][j];
long res = dfs(i - 1, 0) + Math.max(0, k - nums[i]); // 增加当前位置
if (j < 2) res = Math.min(res, dfs(i - 1, j + 1)); // j<2时,可以不增加当前位置
return memo[i][j] = res;
}
}
1:1翻译成递推
自己改成了下面这样子。
class Solution {
public long minIncrementOperations(int[] nums, int k) {
int n = nums.length;
// dp[i][j]表示到下标i,前面有j个位置没有到k(包括当前位置)
long[][] dp = new long[n + 1][3];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < 3; ++j) {
dp[i + 1][j] = dp[i][2] + Math.max(0, k - nums[i]); // 不得不选
if (j > 0) {
dp[i + 1][j] = Math.min(dp[i + 1][j], dp[i][j - 1]);// 可以不选
}
}
}
return Arrays.stream(dp[n]).min().getAsLong();
}
}
Q4:2920. 收集所有金币可获得的最大积分⭐⭐⭐⭐⭐🐂
https://leetcode.cn/problems/maximum-points-after-collecting-coins-from-all-nodes/description/
解法1——自顶向下(记忆化搜索)
https://leetcode.cn/problems/maximum-points-after-collecting-coins-from-all-nodes/solutions/2503152/shu-xing-dp-ji-yi-hua-sou-suo-by-endless-phzx/
class Solution {
List<Integer>[] g;
int[] coins;
int k;
int[][] memo;
public int maximumPoints(int[][] edges, int[] coins, int k) {
int n = edges.length + 1;
this.coins = coins;
this.k = k;
g = new ArrayList[n];
Arrays.setAll(g, e -> new ArrayList<>());
for (int[] e: edges) {
g[e[0]].add(e[1]);
g[e[1]].add(e[0]);
}
memo = new int[n][14]; // 该题目数据下最多右移14次变成0
for (int i = 0; i < n; ++i) {
Arrays.fill(memo[i], -1);
}
return dfs(0, -1, 0);
}
public int dfs(int x, int fa, int d) {
if (memo[x][d] != -1) return memo[x][d];
int res1 = (coins[x] >> d) - k;
int res2 = coins[x] >> (d + 1);
for (int y: g[x]) {
if (y == fa) continue;
res1 += dfs(y, x, d);
if (d < 13) {
res2 += dfs(y, x, d + 1);
}
}
return memo[x][d] = Math.max(res1, res2);
}
}
解法2——自底向上
自底向上每个节点都只会枚举一遍,不需要 记忆数组了。
class Solution {
List<Integer>[] g;
int[] coins;
int k;
public int maximumPoints(int[][] edges, int[] coins, int k) {
int n = edges.length + 1;
this.coins = coins;
this.k = k;
g = new ArrayList[n];
Arrays.setAll(g, e -> new ArrayList<>());
for (int[] e: edges) {
g[e[0]].add(e[1]);
g[e[1]].add(e[0]);
}
return dfs(0, -1)[0];
}
public int[] dfs(int x, int fa) {
int[] res1 = new int[14], res2 = new int[14];
// 先得到各个子节点的结果
for (int y: g[x]) {
if (y != fa) {
int[] r = dfs(y, x);
for (int j = 0; j < 14; ++j) {
res1[j] += r[j];
if (j < 13) res2[j] += r[j + 1];
}
}
}
// 再逐个处理
for (int j = 0; j < 14; ++j) {
res1[j] = Math.max(res1[j] + (coins[x] >> j) - k, res2[j] + (coins[x] >> (j + 1)));
}
return res1;
}
}
成绩记录
多的不说,排名挺吉利的。。
无奈遗憾掉分。