计算机视觉(OpenCV+TensorFlow)

计算机视觉(OpenCV+TensorFlow)


文章目录

  • 计算机视觉(OpenCV+TensorFlow)
  • 前言
    • 3.图像金字塔
      • 3.1 高斯金字塔
      • 3.2 拉普拉斯金字塔
    • 4.图像轮廓
      • 图像边缘和图像轮廓的区别
      • 检测图像
      • 绘制边缘
    • 5.轮廓近似
      • 外接矩形
      • 外接圆
    • 6. 模板匹配
      • 6.1 什么是模板匹配
  • 总结


前言

本系列文章是OpenCV系列文章的第三篇,仍然跟随上篇内容主要聚焦于图像的一些操作


3.图像金字塔

在通常情况下我们使用大小恒定的图像。但在某些情况下,我们需要使用不同分辨率的同幅图像,例如,在搜索图像中的某些内容比如脸部信息时,并不确定该内容在图像中占据的大小。这种情况下,我们需要创建一组不同的分辨率的相同图像,并在所有图像中搜索该内容。这些不同分辨率的图像被称为图像金字塔(因为当它们堆叠排列时,底部为最高分辨率图像而顶部为最低分辨率图像,看起来像金字塔)

                                                                                                                                                                    **图像金字塔主要有两种:**
  1. 高斯金字塔
  2. 拉普拉斯金字塔

3.1 高斯金字塔

向上采样:在图像金字塔中,越靠下的分辨率越大,所以向上采样指的是从分辨率大的图像中得到分辨率小的图像
方法:

  1. 将图像与下方的高斯核进行卷积,就是我们前几次一直说的对应位置相乘最后都加在一起从而代替中间像素的那个值
  2. 将所有偶数行和偶数列去除。

为什么要先卷积再去除呢:
是因为如果直接去除偶数行和偶数列,那势必会导致大量数据的丢失,如果我们先卷积,卷积后的值是它周围的值共同作用的,所以卷积后再去除损失的数据量比直接去除要小很多,但是还是会少一部分数据
image.png
向下采样:在图像金字塔中,越靠上的分辨率越大,所以向下采样指的是从分辨率小的图像中得到分辨率大的图像
**方法: **
image.png我们看第一步放大后,有近四分之三的数据都是0,第二部卷积后,实际上是把不是0的数据给分配了一部分给0
那实际上,就是把原有的数据给往四周分散了。那在放大的时候,原来的数据给了其他的,那对应自身来说不也就是丢失了一部分数据。

# 引入图片
img=cv2.imread("AM.png")
cv_show(img,'img')
print (img.shape)
# 向上采样
up=cv2.pyrUp(img)
cv_show(up,'up')
print (up.shape)
# 向下采样
down=cv2.pyrDown(img)
cv_show(down,'down')
print (down.shape)

**而为了让数据尽量的少丢失点,我们又有了拉普拉斯金字塔。 **

3.2 拉普拉斯金字塔

https://blog.csdn.net/ftimes/article/details/106731558

** 在高斯金字塔中,我们提到了上采样和下采样。但是无论是上采样还是下采样都会丢失像素值,所以这两种操作并不是可逆的。也就是说,对一幅图先进行上采样再进行下采样,是无法恢复到原始状态。同样,先下采样再上采用也无法恢复到原始状态**

因此我们引入了拉普拉斯金字塔(The Laplacian pramid)
简而言之,拉普拉斯金字塔的第 i 层,是由【高斯金字塔的第 i 层】 与 【高斯金字塔中的第 i+1 层的向上采样结果】之差。
简单来说,拉普拉斯金字塔是一个 高斯差值金字塔,下面这个图就是一个拉普拉斯每一层的流程
image.png
下面这个图简化了上图的流程,我们从后往前看,G3向上取样后,G2减去它就是 L2。
而 G3加上L2就是G2。因为L2=G2-G3向上
image.png

up=cv2.pyrUp(img)
up_down=cv2.pyrDown(up)
cv_show(img-up_down,'img-up_down')

4.图像轮廓

图像边缘和图像轮廓的区别

** 前面我们在图像形态学操作里,用cv2.morphologyEx()这个函数实现图像梯度的提取,用膨胀图像-腐蚀图像,获取一个图像中前景图像的边缘。还有我们的礼帽和黑帽一定程度也能提取图像的边缘信息。依旧我们在图像梯度中详细讲过的 sobel算子,scharr算子,laplasian算子,canny边缘检测,这些都是检测图像中边缘线条的。**
** 而本章讲的是图像轮廓,图像轮廓和图像边缘不少一回事,图像边缘不少图像轮廓!!!!图像边缘是图像中的线条,这些线条是不连续的,零散的线段,只要是由梯度,把由梯度的像素点提取出来就可以了,这是边缘检测的操作手法。而图像轮廓首先要是一个整体的,就是将边缘连接起来形成一个整体,这才叫轮廓。**
** 边缘检测主要是通过一些手段检测数字图像中明暗变化剧烈(即梯度变化比较大)像素点,偏向于图像中像素点的变化。如Canny边缘检测,结果通常保存在和原图片一样尺寸和类型的边缘图中。轮廓检测指检测图像中的对象边距,更偏向于关注上层语义对象,主要用来分析物体的形态,比如物体的周长和面积等。可以说 边缘包括轮廓。**
** 边缘主要是作为图像的特征使用,比如可以用边缘特征可以区分脸和手,而轮廓则是一个很好的图像目标的外部特征,这种特征对于我们进行图像分析,目标识别和理解等更深层次的处理都有很重要的意义**

检测图像

在OpenCV中,我们用 image, contours, hierarchy = **cv2.findContours(img,mode,method) **这个函数来得到轮廓

  • img:要做轮廓检测的图像,必须是8位单通道二值图像。所以,一般情况下我们都是将图像处理位二值图像后再将其作为参数传入。在很多情况下,我们是预先对图像进行阈值分割或者边缘检测处理(比如经过Canny,拉普拉斯等边缘检测算子处理过的二值图像),在得到满意的二值图像后再作为参数传入使用,这样效果会更好。
  • mode:轮廓检索模式。均可了轮廓的提取方式:
    • cv2.RETR_EXTERNAL:只检测最外面的轮廓
    • cv2.RETR_LIST:减少所有的轮廓,并将其保存到一条链表当中,对检测到的轮廓不建立等级关系
    • cv2.RETR_CCOMP:检索所有轮廓并将它们组织成两级层次结构。顶层是各部分的外部边界,第二层是空洞的边界。
    • cv2.RETR_TREE:检索所有轮廓,并建立一个等级树结构的轮廓,就是重构嵌套轮廓的整个层次
    • 说明:一般情况下,我们只用第4种模式,因为第4种模式是检测所有的轮廓,并且把这些轮廓按层次保存成一个树结构,后面如果我们有需要直接调用即可。
  • method:轮廓逼近方法,就是如何表达轮廓,意思就是我是用线表示轮廓呢?还是简单的用2个点就表示一条线的轮廓:
    • cv2.CHAIN_APPROX_NONE:以 Freeman 链码的方式输出轮廓,意思就是我存储了所有的轮廓点,就是相连两个点的像素位置差不超过 1 ,我可以用完整的线条来表示轮廓,就是我可以画出一个完整的轮廓。
    • cv2.CHAIN_APPROX_SIMPLE:压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标。比如一个矩形只用4个点就可以表示。同理如果是一个多边形,我们就输出这个多边形的订单序列

image.png
函数返回值:

  • image:与参数img的尺寸一致的。后面高版本的opencv已经不返回这个对象
  • contours:是返回的轮廓。这个轮廓是一个数组
  • hierachy:是轮廓的层次信息,就是mode参数决定的返回的轮廓数据的组织结构
  • 说明:在opencv中,我们都是从黑色背景种查找白色对象,因此,对象必须是白色的,背景必须是黑色的

使用轮廓检测函数 cv2.findContours()要注意的点:

  1. 我们检测一张彩图的轮廓是,首先我们要把彩图转换为灰度图像,然后我们用阈值函数把灰度图像处理成二值图像,此时才能作为参数 img 传入到函数中
  2. 我们检测轮廓的时候,一张图片可能有多个轮廓,也可能有一个轮廓礼貌套几个轮廓(就是空洞)所以我们要明确我们想要检测几级轮廓。
    1. 当我们只想检测最外面的一层轮廓时,参数 mode=cv2.RETR_EXTERNAL
    2. 当我们像检测所有的轮廓(就是轮廓里面套轮廓,可以嵌套多层)时,参数mode可以选择其他三种
      1. cv2.RETR_LIST是把所用的轮廓放到一起,不区分轮廓之间的等级关系
      2. cv2.RETR_CCOMP是把所有的轮廓分2级
      3. cv2.RETR_TREE是建立一个树结构的层次关系
  3. 当我们轮廓检测完毕后,不管是检测一个轮廓还是检测所有的轮廓,检测所有轮廓不管是保存轮廓之间的等级关系还是不保存,我们的轮廓本身数据可以有两种方式存储,、
    1. cv2.CHAIN_APPROX_NONE:就是保存轮廓的所有像素点,此时返回的 contours可视化处理后就是轮廓线。
    2. cv2.CHAIN_APPROX_SIMPLE:就是表示我们轮廓数据不是连续的像素点而是轮廓的顶点序列,此时我们可视化 contours时就是一些顶点,就是轮廓的顶点,不是线。
    3. countours的属性:
      1. len(contours)返回的就是我们检测到了几个轮廓
      2. len(contours[i])返回第 i 个轮廓长度,就是它有多少个像素点
      3. contours[i].shape返回的就是轮廓内点的形状,比如(4,1,2)就表示轮廓 i 有4个轮廓点,每个点是1行两列
      4. [[79,270]] [[79,383]]** [[195,383]]** [[195, 270]] 这其实就是一个方框轮廓的4个点的坐标值。**
  4. hierarchy是我们检测到的轮廓的等级关系的数据,这个数据可以反映我们的轮廓之间是如何连接的。

绘制边缘

轮廓绘制函数:cv2.drawContours(img, contours, contourIdx, color [ thickness, lineType, hierarchy, maxLevel, offset] )

  1. img:待绘制轮廓的图像
  2. contours:需要绘制的轮廓,这个参数就是 findContours()的输出
  3. contourldx:需要绘制的轮廓的索引号,如果 contourldx=-1,表示绘制全部轮廓;如果这个参数是零或者正整数,表示要绘制的轮廓是对应的索引号的轮廓
  4. color:绘制的颜色,用 BGR 表示
  5. thickness:表示轮廓的粗细,如果 thickness=-1则表示要绘制实心轮廓
  6. lineType:轮廓的线条形状
  7. hierarchy:cv2.findContours()返回的层次信息。
  8. maxLevel:要绘制的轮廓的偏移到不同的位置展示出来

注意:由于该函数是在 img 的基础上绘制的,不会再重新生成一个带轮廓的新对象,所有这个函数是在原图中绘制的。所以我们要保存原图
轮廓检测步骤小结:

  1. 当我们拿到的原图是一张彩色图的时候,第一步我们要把彩色图变成灰度图
  2. 把灰度图用阈值函数处理成二值图像
  3. 检测轮廓
  4. 绘制轮廓
# 导入图片
img = cv2.imread('contours.png')
# 彩色图转灰色图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 灰色图转二值图
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
cv_show(thresh,'thresh')
# 检测轮廓
binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
# 画轮廓
draw_img = img.copy()
res = cv2.drawContours(draw_img, contours, -1, (0, 0, 255), 2)
cv_show(res,'res')

5.轮廓近似

我们看下面这个图片,它不是一个规则的图形,是一个不规则的图形,如果要精确的描述轮廓的话就是第三幅图
如果像要近似的表示的话,就是第二幅图,用一个矩形就可以表示

https://blog.csdn.net/SSJJRRRR/article/details/108478898
image.png
那OpenCV的 approxPolyDP 函数就可以实现这个功能。
approxPolyDP函数使用了 Douglas-Peucker算法:

  1. 先从轮廓中找出两个最远的点,将两点相连,即 b-c ;
  2. 在原来的轮廓上查找一个里线段距离最远的点,将该点加入逼近后的新轮廓中,即 c-d ;
  3. 然后重复前面的算法,不断迭代,将最远的点添加进来,直到所有的点到多边形的最短距离小于指定的精度

image.png
在OpenCV中 cv2.approxPolyDP(cnt,epsilon,True) 就是用来得到近似轮廓
cnt 就是 findContours函数得到的 contours
epsilon就是精度
最后一个布尔值:如果为true,则闭合近似曲线(其第一个和最后一个顶点为连接的);否则,不闭合。

# 导入图片
img = cv2.imread('contours2.png')
# 转成灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 转为二值图
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
# 检测轮廓
binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]
# 画出轮廓
draw_img = img.copy()
res = cv2.drawContours(draw_img, [cnt], -1, (0, 0, 255), 2)
cv_show(res,'res')
# arcLength轮廓的周长,epsilon是精度
epsilon = 0.15*cv2.arcLength(cnt,True)
# 得到近似轮廓
approx = cv2.approxPolyDP(cnt,epsilon,True)
# 画出轮廓
draw_img = img.copy()
res = cv2.drawContours(draw_img, [approx], -1, (0, 0, 255), 2)
cv_show(res,'res')

外接矩形

x,y,w,h=boundingRect(cnt)
cnt 就是一个轮廓,x,y是矩形的左上角坐标,而(w,h)为矩形的宽度和高度
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
img:画轮廓的图片
(x,y):矩形的左上角的坐标
(x+w,y+h):矩形的右下角的坐标
(0,255,0):颜色 BGR
2:线条宽度

# 引入坐标
img = cv2.imread('contours.png')
# 转为灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 转为二值图
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
# 检测轮廓
binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]
# 找到外接矩形的信息
x,y,w,h = cv2.boundingRect(cnt)
# 画矩形
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv_show(img,'img')

外接圆

(x,y),radius = cv2.minEnclosingCircle(cnt)
cnt:就是一个轮廓
(x,y):圆心坐标
radius:半径
img = cv2.circle(img,center,radius,(0,255,0),2)
参数基本上与外接矩形都差不多

(x,y),radius = cv2.minEnclosingCircle(cnt) 
center = (int(x),int(y)) 
radius = int(radius) 
img = cv2.circle(img,center,radius,(0,255,0),2)
cv_show(img,'img')

6. 模板匹配

6.1 什么是模板匹配

https://blog.csdn.net/m0_37579176/article/details/116950903
image.png

模板匹配可以看作是对象检测的一种非常基本的形式。使用模板匹配,我们可以使用包含要检测对象的”模板“来检测输入图像中的对象。

也就是说,我们需要两个图像来应用模板匹配:

  1. 源图像:这是我们希望在其中找到的与模板匹配的图像
  2. 模板图像:我们要搜索的图像

为了在源图像中找到模板图像,我们在源图像中从左到右和从上到下依次滑动模板:
image.png
应用模板匹配,就像在源图像上从左到右,从上到下滑动模板,在每一个位置都计算一个指标以表明这个位置处两个图像块之间匹配程度的高低
在每个(x,y)位置,都会计算一个度量来表示匹配的“好”或“坏”。通常,我们使用归一化的相关系数来确定两个图像块之间像素强度有多“相似”
相关系数有很多计算方式。
image.png
对于模板 T 在源图像 I 上的每个位置,取两者重合部分的图像块,计算相似度度量结果,存储在结果矩阵 R 中。源图像中的每个(x,y)坐标在结果矩阵 R 中包含一个条目,除非模板越界

下图就是结果矩阵与源图像重叠后的图像
在这里,我们可以可视化叠加在原始图像上的结果矩阵R。注意R与原始模板大小不相同。这是因为整个模板必须在源图像的内部滑动,得到等大的两个图像块,才能计算相关性。如果模板超出了源的边界,我们将不计算相似性度量。
image.png
结果矩阵中 R 最亮的位置表示最佳匹配位置,而暗区表示该点源图像和模板图像之间的相关性很小
当模板图像中的水杯,与源图像中的水杯,两者完全重合的时候,模板图像左上角所在的源图像位置,存储的是模板与源图像相似的的最大值。
但是我们需要确保要检测的模板与源图像中检测的对象几乎完全相同。即使外观很小的偏差也会极大地影响匹配的结果。
在OpenCV中我们可以使用 cv2.matchTemplate()进行模板匹配,这个函数有三个参数:

  1. 输入图像:包含我们要检测的对象的图像
  2. 模板图像:对象的图像
  3. 模板匹配方法

- TM_SQDIFF:计算平方不同,计算出来的值越小,越相关
- TM_CCORR:计算相关性,计算出来的值越大,越相关

- TM_CCOEFF:计算相关系数,计算出来的值越大,越相关
- TM_SQDIFF_NORMED:计算归一化平方不同,计算出来的值越接近0,越相关
- TM_CCORR_NORMED:计算归一化相关性,计算出来的值越接近1,越相关
- TM_CCOEFF_NORMED:计算归一化相关系数,计算出来的值越接近1,越相关
另外值得注意的是,如果您只想检测模板图像上的特定区域,则可以为模板图像提供一个掩膜,如下所示:
**result = cv2.matchTemplate(image, template, cv2.TM_CCOEFF_NORMED, mask) **

掩膜,即为模板图像上感兴趣的区域,用于忽略模板图像上无用的干扰的特征,即不属于检测目标的干扰特征。对于模板上你不希望被搜索的区域,掩膜值应该设置为0。对于模板图像上您要进行搜索的区域,掩膜值应该设置为255。掩膜与模板图像具有相同的维度,并且每个元素的类型也需要一致。

# 引入源图像
img = cv2.imread('lena.jpg', 0)
# 引入模板图像
template = cv2.imread('face.jpg', 0)
# 模板匹配
res = cv2.matchTemplate(img, template, cv2.TM_SQDIFF)
# 得到最大的像素点和最小的像素点的值和坐标
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
# 根据方法选择最大值或最小值的坐标
# 如果是平方差匹配TM_SQDIFF或归一化平方差匹配TM_SQDIFF_NORMED,取最小值
if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
    top_left = min_loc
else:
    top_left = max_loc
bottom_right = (top_left[0] + w, top_left[1] + h)
# 画矩形
cv2.rectangle(img2, top_left, bottom_right, 255, 2)


总结

这次紧接者上篇内容再一次讲解了一些有关图像的操作,预计还需要一期把图像操作讲个差不多后,进入实战环节,将上述图像内容,通过实战进行一个强化训练

我是Mayphry,从一点点到亿点点,我们下次再见

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/208660.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode 1212 查询球队积分(PostgreSQL)

数据准备 Create table If Not Exists Teams (team_id int, team_name varchar(30)) Create table If Not Exists Matches (match_id int, host_team int, guest_team int, host_goals int, guest_goals int) Truncate table Teams insert into Teams (team_id, team_name) va…

关于pytorch安装成功后No module name ‘torch‘的解决方法

一、pytorch环境配置 1、Pytorch 的安装 (1)单击启动 Anaconda Prompt 创建虚拟房间 (2)输入py -0p查看当前python版本 或者这里不清楚自己 python 版本的可以 cmd 命令行输入 python 查询 (3)输入命令…

Jetson Nano部署YOLOv5与Tensorrtx加速

一、烧录镜像 1、Jetson Nano烧写系统镜像 Jetson Nano是一款形状、外接口类似于树莓派的嵌入式主板,搭载了四核Cortex-A57处理器,GPU则是拥有128个NVIDIA CUDA核心的NVIDIA Maxwell架构显卡,内存为4GB的LPDDR4,存储则为16GB eM…

『 Linux 』环境变量

文章目录 🚀什么是环境变量🚀🚀查看环境变量🚀🕹️和环境变量有关的命令🕹️ 🚀PATH环境变量🚀🕹️设置PATH环境变量🕹️ 🚀HOME环境变量&#x1…

vue 前端实现login页登陆 验证码

实现效果 // template <el-form :model"loginForm" :rules"fieldRules" ref"loginForm" label-position"left" label-width"0px" class"login-container"><span class"tool-bar"></sp…

解决VSCode按住Ctrl(or Command) 点击鼠标左键不跳转的问题(不能Go to Definition)

问题出现 往往在升级了VSCode以后&#xff0c;就会出现按住Ctrl&#xff08;or Command&#xff09; 点击鼠标左键不跳转的问题&#xff0c;这个问题很常见。 解决办法 1 进入VScode的首选项&#xff0c;选择设置 2 输入Go to definition&#xff0c;找到如下两个设置&#…

逸学java【初级菜鸟篇】11.多线程【多方位详解】

hi&#xff0c;我是逸尘&#xff0c;一起学java吧 目标&#xff08;任务驱动&#xff09; 本章没有任务目标&#xff0c;略述概述多线程一隅&#xff0c;全是精华。 线程 进程 在提到线程是什么之前我们还需要提到另一个名词 他就是进程 进程&#xff1a;是指一个内存中运…

如何删除mac苹果电脑上面的流氓软件?

在使用苹果电脑的过程中&#xff0c;有时候我们也会遇到一些不需要的软件。无论是因为不再需要&#xff0c;或者是为了释放磁盘空间&#xff0c;删除这些软件是很重要的。本文将为大家介绍怎样删除苹果电脑上的软件&#xff01; CleanMyMac X全新版下载如下: https://wm.make…

springboot + vue 智能物流管理系统

qq&#xff08;2829419543&#xff09;获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;springboot 前端&#xff1a;采用vue技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xf…

FL Studio(水果软件)2024最新中文版云盘下载

如今&#xff0c;越来越多的音乐人选择使用音乐制作软件来进行音乐的创作&#xff0c;一台电脑、一款软件以及一个外接MIDI就是一个小型的音乐工作站。FL Studio成了音乐界萌新的首选&#xff0c;目前最新的版本为FL Studio2024版本。 你可以不知道如何做音乐&#xff0c;但是…

你对SPA单页面的理解,它的优缺点分别是什么?

面试官&#xff1a;你对SPA单页面的理解&#xff0c;它的优缺点分别是什么&#xff1f;如何实现SPA应用呢 一、什么是SPA SPA&#xff08;single-page application&#xff09;&#xff0c;翻译过来就是单页应用SPA是一种网络应用程序或网站的模型&#xff0c;它通过动态重写当…

微信小程序 slider 翻转最大和最小值

微信小程序 slider 翻转最大和最小值 场景代码示例index.wxmlindex.jsutil.js 参考资料 场景 我想使用 slider 时最左边是 10 最右是 -10。 但是想当然的直接改成<slider min"10" max"-10" step"1" /> 并没用。 查了文档和社区也没有现成…

HarmonyOs 4 (二) HelloWord

目录 一 开发工具下载安装1.1 下载安装包1.2 下载相关依赖 二 开发者注册与个人实名认证三 第一个程序2.1 创建第一个程序2.2 认识开发者界面2.3 目录结构认识2.3.1 父目录认识2.3.2 AppScope 目录2.3.3 entry目录2.3.3.1 ets 目录2.3.3.2 resources目录 2.3.4 认识配置文件2.3…

(四)Tiki-taka算法(TTA)求解无人机三维路径规划研究(MATLAB)

一、无人机模型简介&#xff1a; 单个无人机三维路径规划问题及其建模_IT猿手的博客-CSDN博客 参考文献&#xff1a; [1]胡观凯,钟建华,李永正,黎万洪.基于IPSO-GA算法的无人机三维路径规划[J].现代电子技术,2023,46(07):115-120 二、Tiki-taka算法&#xff08;TTA&#xf…

SQL Server 2016(创建数据库)

1、实验环境。 某公司有一台已经安装了SQL Server 2016的服务器&#xff0c;现在需要新建数据库。 2、需求描述。 创建一个名为"db_class"的数据库&#xff0c;数据文件和日志文件初始大小设置为10MB&#xff0c;启用自动增长&#xff0c;数据库文件存放路径为C:\db…

Python 网络爬虫(一):HTML 基础知识

《Python入门核心技术》专栏总目录・点这里 文章目录 1. 什么是 HTML2. HTML 的特点3. HTML 的标签和属性4. HTML 的结构4.1 文档类型声明4.2 根元素4.3 头部部分4.4 主体部分4.5 表格标签4.6 区块4.7 嵌套和层次结构4.8 表单4.9 注释 5. HTML 交互事件 大家好&#xff0c;我是…

C#文件夹基本操作(判断文件夹是否存在、创建文件夹、移动文件夹、删除文件夹以及遍历文件夹中的文件)

目录 一、判断文件夹是否存在 1.Directory类的Exists()方法 2. DirectoryInfo类的Exists属性 二、创建文件夹 1. Directory类的CreateDirectory()方法 2.DirectoryInfo类的Create()方法 三、移动文件夹 1. Directory类的Move()方法 2.DirectoryInfo类的MoveT…

Docker容器间网络共享

Docker容器间网络共享 1、新建网络2、容器绑定网卡3、验证 Docker环境中为了一套应用部署多个环境、并且不修改配置文件的情况下&#xff0c;做到一键部署。要求不同容器直接的网络交互&#xff0c;使用容器名称。 网络相关常用命令 #查看网络内部信息docker network inspect b…

应用于智慧零售的AI边缘计算盒子+AI算法软硬一体化方案

中国是世界上最大的消费市场&#xff0c;零售行业拥有极大的发展潜力&#xff0c;阿里、腾讯两大互联网巨头正在加紧、加大布局&#xff1b; 信迈智慧零售方案可涵盖快消行业、服饰行业、餐饮行业、酒店行业、美家行业、消费电子行业、新零售商行业、服饰连锁、大卖场/商超、百…

详解Linux常用命令

目录 1. ps 命令 2. top 命令 3. grep 命令 4. df 命令 5. tail 命令 6. head 命令 7. cat 命令 8. --help 和 man 命令 9. cd 命令 10. mkdir 命令 11. rm 命令 12. mv 和 cp 命令 13. touch 命令 14. vi 或 vim 命令 15. chmod 修改权限 16. 打包和压缩文件 …