《opencv实用探索·七》一文看懂图像卷积运算

1、图像卷积使用场景

图像卷积是图像处理中的一种常用的算法,它是一种基本的滤波技术,通过卷积核(也称为滤波器)对图像进行操作,使用场景如下:

模糊(Blur): 使用加权平均卷积核对图像进行卷积可以实现模糊效果。这对于去除图像中的噪声或减小细节可以很有帮助。

锐化(Sharpen): 锐化卷积核可以突出图像中的边缘,增强图像的细节。这对于使图像看起来更清晰和更有对比度很有用。

边缘检测(Edge Detection): 使用特定的卷积核,如Sobel、Prewitt或Laplacian等,可以检测图像中的边缘。这对于计算机视觉任务和物体识别非常重要。

浮雕效果: 通过使用浮雕卷积核,可以使图像看起来带有凹凸的感觉,类似于雕刻。

平滑和降噪: 卷积可以用于平滑图像,减少图像中的高频噪声。常见的平滑卷积核包括高斯核。

纹理分析: 通过使用不同类型的卷积核,可以提取图像中的纹理信息,用于纹理分析和分类任务。

图像增强: 卷积可以用于增强图像的特定特征,例如对比度、亮度或颜色。

运动模糊(Motion Blur): 使用特定的卷积核,可以模拟图像中的运动模糊,这对于一些图像合成和特效很有用。

下面是一些实现效果图:
图像模糊:
在这里插入图片描述
图像浮雕:
在这里插入图片描述
图像锐化
在这里插入图片描述

2、卷积运算计算方式

先定义一个卷积核,也被成为卷积模板或卷积窗口
注意:卷积核是一个nxn的矩阵,且n是一个奇数,这样卷积核才有一个中心点,卷积核中的每个数字都是一个权重。

在这里插入图片描述
从上图中可以看到定义了一个3x3的卷积核,且核内除了中心点权重为1,其他都为0

怎么计算加权平均?
下面定义一个原图像,我们先把卷积核放在图像任意一个位置。
在这里插入图片描述
这时候对卷积核覆盖在原图像中心点的像素进行加权平均:

(250*0 + 210*0 + 220*0 + 20*0 + 30*1 + 140*0 + 240*0 + 140*0 + 110*0) / (0+0+0+0+1+0+0+0+0) = 30

这时候经过卷积的原图像在第三行第四列的像素值置为30,说明图像中这个中心点的灰度值不受周围像素点的影响。卷积运算之后的灰度值仍然是它本身。

下面我们换一个卷积核:
在这里插入图片描述
依旧放在上面原图的那个位置,现在重新进行卷积运算:

(250/9 + 210/9 + 220/9 + 20/9 + 30/9 + 140/9 + 240/9 + 140/9 + 110/9) / (1/9+1/9+1/9+1/9+1/9+1/9+1/9+1/9+1/9) = 151

这时候经过卷积的原图像在第三行第四列的像素值置为151,说明图像中的这个像素灰度值已被周围像素点影响。

下图一张动图模拟了卷积核依次滑过原图像中每个像素点并依次对卷积核中心覆盖的那个像素点进行卷积运算。
在这里插入图片描述

需要注意的是图像在做卷积运算时需要花费一些时间,通常和卷积核的大小有关,卷积核越大卷积运算时间越长图像越模糊,一般情况下推荐使用3x3, 5x5和7x7卷积核对图像进行卷积运算。

下图是我们使用3x3卷积核对原图像进行滑行描扫,核中心走过的区域:
在这里插入图片描述
可以看到经过卷积运算后原图像从原来的12x12变为了10x10,因为3x3卷积核的中心无法做到对原图像的边缘进行卷积运算。那由此可以推断出如果我们使用5x5卷积核,图像将会从原来的12x12变为8x8,最外两层没有参与计算。如果这样的话图像的信息变会丢失,那么怎么让图像中所有的像素都参与卷积运算?

比如我们使用3x3卷积核,通常会在图像最外层添加一层像素,这样在用3x3卷积核滑动时卷积核中心就能扫到图像最外层像素。
在这里插入图片描述

图像卷积效果:
通过卷积运算,对图像进行模糊后,可以将图像中的高频噪声给过滤掉。因此,对图像的卷积运算也称为平滑或者滤波。卷积核也称为滤波器。

如果采用3x3卷积核,且只有核中心为1,其他都为0,那么原图卷积出来没有任何变化
在这里插入图片描述

如果我们把卷积核换成:
在这里插入图片描述
卷积后的图像开始变模糊
在这里插入图片描述

下图为对一张图片进行不同卷积核均值模糊后的结果,可以看到卷积核尺寸越大,图像越模糊。
在这里插入图片描述
通常,均值滤波采用的卷积核里面的权重都是1,求加权平均就等于求平均,在使用卷积核模糊图像时为了尽量保留图像原有的信息,卷积核中心的权值应该最高,越远离核中心的权值越小。这时候就应该考虑使用高斯滤波模糊图像,高斯模糊在平滑物体表面的同时,能够更好的保持图像的边缘和轮廓

参考信息:卷积神经网络

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/207502.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C++入门篇(零) C++入门篇概述

目录 一、C概述 1. 什么是C 2. C的发展史 3. C的工作领域 4. C关键字(C98) 二、C入门篇导论 一、C概述 1. 什么是C C是基于C语言而产生的计算机程序设计语言,支持多重编程模式,包括过程化程序设计、数据抽象、面向对象程序设计、泛型程序设计和设计模式…

Maven无法拉取依赖/构建失败操作步骤(基本都能解决)

首先检查配置文件,确认配置文件没有问题(也可以直接用同事的配置文件(记得修改文件里的本地仓库地址)) 1.file->Invalidate Caches清除缓存重启(简单粗暴,但最有效) 2.刷新maven以及mvn clean,多刷几次,看看还有没有报红的依赖…

Python 中 AttributeError: Int object Has No Attribute 错误

int 数据类型是最基本和最原始的数据类型之一,它不仅在 Python 中,而且在其他几种编程语言中都用于存储和表示整数。 只要没有小数点,int 数据类型就可以存储任何正整数或负整数。 本篇文章重点介绍并提供了一种解决方案,以应对我…

基于Netty的网络调用实现

作为一个分布式消息队列,通信的质量至关重要。基于TCP协议和Socket实现一个高效、稳定的通信程序并不容易,有很多大大小小的“坑”等待着经验不足的开发者。RocketMQ选择不重复发明轮子,基于Netty库来实现底层的通信功能。 1 Netty介绍 Net…

TCP报文解析

1.端口号 标记同一台计算机上的不同进程 源端口:占2个字节,源端口和IP的作用是标记报文的返回地址。 目的端口:占2个字节,指明接收方计算机上的应用程序接口。 TCP报头中的源端口号和目的端口号同IP报头中的源IP和目的IP唯一确定一…

马蹄集第34周

1.战神的对称谜题 不知道为什么超时&#xff01; def main():s input()result 0for i in range(len(s)):l i - 1r i 1while l > 0 and r < len(s) and s[l] s[r]:result max(result, r - l 1)l - 1r 1l ir i 1while l > 0 and r < len(s) and s[l] s…

二分查找与搜索树高频问题

关卡名 逢试必考的二分查找 我会了✔️ 内容 1.山脉数组的峰顶索引 ✔️ 2.旋转数字的最小数字 ✔️ 3.寻找缺失数字 ✔️ 4.优化求平方根 ✔️ 5.中序与搜索树原理 ✔️ 6.二叉搜索树中搜索特定值 ✔️ 7.验证二叉搜索树 ✔️ 基于二分查找思想&#xff0c;可以拓展出很…

【PUSDN】WebStorm中报错Switch language version to React JSX

简述 WebStorm中报错Switch language version to React JSX 可能本页面的写法是其他语法。所以可以不用管。 测试项目&#xff1a;ant design vue pro 前情提示 系统&#xff1a; 一说 同步更新最新版、完整版请移步PUSDN Powered By PUSDN - 平行宇宙软件开发者网www.pusdn…

算法学习—排序

排序算法 一、选择排序 1.算法简介 选择排序是一个简单直观的排序方法&#xff0c;它的工作原理很简单&#xff0c;首先从未排序序列中找到最大的元素&#xff0c;放到已排序序列的末尾&#xff0c;重复上述步骤&#xff0c;直到所有元素排序完毕。 2.算法描述 1&#xff…

C语言-预处理与库

预处理、动态库、静态库 1. 声明与定义分离 一个源文件对应一个头文件 注意&#xff1a; 头文件名以 .h 作为后缀头文件名要与对应的原文件名 一致 例&#xff1a; 源文件&#xff1a;01_code.c #include <stdio.h> int num01 10; int num02 20; void add(int a, in…

uniapp 使用web-view外接三方

来源 前阵子有个需求是需要在原有的项目上加入一个电子签名的功能&#xff0c;为了兼容性和复用性后面解决方法是将这个电子签名写在一个新的项目中&#xff0c;然后原有的项目使用web-view接入这个电子签名项目&#xff1b; 最近又有一个需求&#xff0c;是需要接入第三方的…

蓝桥杯每日一题2023.11.30

题目描述 九数组分数 - 蓝桥云课 (lanqiao.cn) 题目分析 此题目实际上是使用dfs进行数字确定&#xff0c;每次循环中将当前数字与剩下的数字进行交换 eg.1与2、3、4、、、进行交换 2与3、4、、、进行交换 填空位置将其恢复原来位置即可&#xff0c;也就直接将其交换回去即可…

Linux(CentOS7.5):新增硬盘分区纪实

一、服务器概述 1、既有一块系统硬盘&#xff0c;新增一块100G硬盘。 2、要求&#xff0c;将新插入硬盘分为&#xff1a;20G、30G、50G。 二、操作步骤 1、确认新硬盘是否插入成功&#xff1a; fdisk -l# 红色框出来的&#xff0c;为识别出来的新硬盘信息 # 黄色框出来的&#…

Linux:锁定部分重要文件,防止误操作

一、情景描述 比如root用户或者拥有root权限的用户&#xff0c;登陆系统后&#xff0c;通过useradd指令&#xff0c;新增一个用户。 而我们业务限制&#xff0c;只能某一个人才有权限新增用户。 那么&#xff0c;这个时候&#xff0c;我们就用chattr来锁定/etc/passwd文件&…

一些ab命令

1.ab简介 ab是apache自带的压力测试工具&#xff0c;是apachebench命令的缩写。ab非常实用&#xff0c;它不仅可以对apache服务器进行网站访问压力测试&#xff0c;也可以对或其它类型的服务器如nginx、tomcat、IIS等进行压力测试。 ab的原理&#xff1a;ab命令会创建多个并发…

力扣 790. 多米诺和托米诺平铺(一维dp)

题目描述&#xff1a; 有两种形状的瓷砖&#xff1a;一种是 2 x 1 的多米诺形&#xff0c;另一种是形如 "L" 的托米诺形。两种形状都可以旋转。 给定整数 n &#xff0c;返回可以平铺 2 x n 的面板的方法的数量。返回对 109 7 取模 的值。 平铺指的是每个正方形都…

df新增一列数据,并指定列名

方法1&#xff1a;直接指定df列名赋值为list即可 skill_info_df[age] age_list ps:list的长度要和df对齐 方法二 使用insert&#xff1a;

智能优化算法应用:基于象群算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于象群算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于象群算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.象群算法4.实验参数设定5.算法结果6.参考文献7.MATLAB…

AntDB数据库,通信行业20年变迁的见证者

2000年至今&#xff0c;通信行业发展已过了20多年。面对通信行业巨大的数据信息&#xff0c;数据库在行业发展中发挥了巨大的作用&#xff0c;AntDB数据库便是其中较为知名的一款数据库。在通信行业快速发展的阶段&#xff0c;打破国外产品与技术垄断是产业发展的重点与难点。面…

latex表格中内容过多如何换行【已解决】

最近在写论文的时候放了一个表格&#xff0c;但是表格看起来特别大&#xff0c;因为想让某些内容多的单元格完成换行操作 首先在main.tex引入makecell包 \usepackage{makecell} 然后回到表格找到你想换行的单元格&#xff0c;把\makecell{}加进去&#xff0c;然后在需要换行的…