Springboot快速整合kafka

kafka的基本了解

kafka也是 目前常用的消息中间件,支持同步与异步通信,和rabbitmq一样,工作模式大概相同,并且被spingboot整合的后的都是 中间件Template的实列化客户端类 ,消费者监听注解为@KafkaListener,和RabbitListener和很相似,这些消息中间件使用过后,发现大致都是相同的.
rabbitmq快速入门学习
对比
一般选择rabbitmq是完全足够的

环境安装

docker拉取镜像
kafka对zookeeper强依赖,毕竟能装载的数据量有这么大

docker pull zookeeper:3.4.14
#启动  这里使用的是host模式,一般说是需要统一docker网络
docker run -d --name zookeeper -p 2181:2181 zookeeper:3.4.14
#拉取 kafka镜像主义版本依赖问题
docker pull wurstmeister/kafka:2.12-2.3.1
#启动
docker run -d --name kafka \
--env KAFKA_ADVERTISED_HOST_NAME=192.168.249.132 \
--env KAFKA_ZOOKEEPER_CONNECT=192.168.249.132:2181 \
--env KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://192.168.249.132:9092 \
--env KAFKA_LISTENERS=PLAINTEXT://0.0.0.0:9092 \
--env KAFKA_HEAP_OPTS="-Xmx256M -Xms256M" \
--net=host wurstmeister/kafka:2.12-2.3.1

在这里插入图片描述
和消息队列一样,角色分别是生成者和消费者,生产者发送消息交给kafka服务,其中kafka一般是集群方式,单点为broker
kafka没有queue队列一说,是将消息存放在topic主题中和然后分发给消费者,这里的消费者是以组为单位,一组里面可以有多个消费者,但是只有一台机子消费者可以消费消息,而rabbitmq可以是以队列为单位消费,通过交换机进行分发,如果队列绑定多个消费者,那么可以自己选择轮询或者其他消费机制
在 Kafka 和 RabbitMQ 中,消费者组(或集群)的行为略有不同:

Kafka:

Kafka Consumer Group:

  • 在 Kafka 中,一个消费者组可以有多个消费者。
  • 每个分区内的消息只能由消费者组内的一个消费者消费,但不同分区的消息可以被不同的消费者处理。
  • 这种方式确保了分布式消费者组的横向扩展,每个消费者只负责处理特定分区的消息。
RabbitMQ:

RabbitMQ Consumer Group:

  • RabbitMQ 中没有严格的消费者组的概念,而是通过队列的方式来进行消息的订阅。
  • 多个消费者可以订阅同一个队列,每个消息只能被其中一个消费者消费。
  • RabbitMQ 不同于 Kafka 的是,消息不是在队列之间划分,而是通过交换机将消息路由到一个或多个队列。

总结:

在 Kafka 中,分区是横向划分消息的单元,每个分区只能由一个消费者处理,但不同分区可以并行处理。
在 RabbitMQ 中,队列是消息的接收单元,每个消息只能被一个消费者接收,但不同队列的消息是相互独立的。

这里不做过多讨论

基本使用

1.引入依赖

<dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka-clients</artifactId>
</dependency>

2.消息发送


/**
 * 生产者
 */
public class ProducerQuickStart {

    public static void main(String[] args) {
        //1.kafka的配置信息
        Properties properties = new Properties();
        //kafka的连接地址
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.200.130:9092");
        //发送失败,失败的重试次数
        properties.put(ProducerConfig.RETRIES_CONFIG,5);
        //消息key的序列化器
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
        //消息value的序列化器
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");

        //2.生产者对象
        KafkaProducer<String,String> producer = new KafkaProducer<String, String>(properties);

        //封装发送的消息 需要指定topic 消息是存放在topic中的
        ProducerRecord<String,String> record = new ProducerRecord<String, String>("topic","100001","hello kafka");

        //3.发送消息
        producer.send(record);

        //4.关闭消息通道,必须关闭,否则消息发送不成功
        producer.close();
    }

}

3.消息消费
其中消息的序列化器和生产者一样,其次消费者单位是组,如果一个消费者组内只有一个可以接收信息,而有多个消费者监听该topic组,那么消息会发给每一个组,默认就是fanout扇出交换机

/**
 * 消费者
 */
public class ConsumerQuickStart {

    public static void main(String[] args) {
        //1.添加kafka的配置信息
        Properties properties = new Properties();
        //kafka的连接地址
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.200.130:9092");
        //消费者组
        properties.put(ConsumerConfig.GROUP_ID_CONFIG, "group2");
        //消息的反序列化器
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");

        //2.消费者对象
        KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(properties);

        //3.订阅主题
        consumer.subscribe(Collections.singletonList("topic"));

        //当前线程一直处于监听状态
        while (true) {
            //4.获取消息
            ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofMillis(1000));
            for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                System.out.println(consumerRecord.key());
                System.out.println(consumerRecord.value());
            }
        }

    }

}

集群达到高可用

和rqabbit以及其他消息中间件一样为了数据的安全性和可用性,一般都是以集群方式存在在这里插入图片描述
还有集群的数据备份在这里插入图片描述

数据同步和故障转移在这里插入图片描述

ISR(in-sync replica)需要同步复制保存的follower

如果leader失效后,需要选出新的leader,选举的原则如下:

第一:选举时优先从ISR中选定,因为这个列表中follower的数据是与leader同步的

第二:如果ISR列表中的follower都不行了,就只能从其他follower中选取

极端情况,就是所有副本都失效了,这时有两种方案

第一:等待ISR中的一个活过来,选为Leader,数据可靠,但活过来的时间不确定

第二:选择第一个活过来的Replication,不一定是ISR中的,选为leader,以最快速度恢复可用性,但数据不一定完整

生产者性质

kafka支持同步发送消息和异步

  • 同步发送

    使用send()方法发送,它会返回一个Future对象,调用get()方法进行等待,就可以知道消息是否发送成功

RecordMetadata recordMetadata = producer.send(kvProducerRecord).get();
System.out.println(recordMetadata.offset());
  • 异步发送

    调用send()方法,并指定一个回调函数,服务器在返回响应时调用函数

//异步消息发送
producer.send(kvProducerRecord, new Callback() {
    @Override
    public void onCompletion(RecordMetadata recordMetadata, Exception e) {
        if(e != null){
            System.out.println("记录异常信息到日志表中");
        }
        System.out.println(recordMetadata.offset());
    }
});

在这里插入图片描述
如果没有得到kafka服务端的ack确认则会触发回调,可以在生产者配置文件中进行配置
//ack配置 消息确认机制

prop.put(ProducerConfig.ACKS_CONFIG,"all");

在这里插入图片描述以及失败重试机制,配置后只有重试耗尽才会抛出失败
在这里插入图片描述

代码配置代码的配置方式:

//ack配置  消息确认机制
prop.put(ProducerConfig.ACKS_CONFIG,"all");

参数的选择说明

生产者从服务器收到的错误有可能是临时性错误,在这种情况下,retries参数的值决定了生产者可以重发消息的次数,如果达到这个次数,生产者会放弃重试返回错误,默认情况下,生产者会在每次重试之间等待100ms

代码中配置方式:

//重试次数
prop.put(ProducerConfig.RETRIES_CONFIG,10);
  • 消息压缩

默认情况下, 消息发送时不会被压缩。

代码中配置方式:

//数据压缩
prop.put(ProducerConfig.COMPRESSION_TYPE_CONFIG,"lz4");
压缩算法说明
snappy占用较少的 CPU, 却能提供较好的性能和相当可观的压缩比, 如果看重性能和网络带宽,建议采用
lz4占用较少的 CPU, 压缩和解压缩速度较快,压缩比也很客观
gzip占用较多的 CPU,但会提供更高的压缩比,网络带宽有限,可以使用这种算法

使用压缩可以降低网络传输开销和存储开销,而这往往是向 Kafka 发送消息的瓶颈所在。

消费者

接下来探讨消费者,
消费者- 消费者组(Consumer Group) :指的就是由一个或多个消费者组成的群体
在这里插入图片描述

  • 一个发布在Topic上消息被分发给此消费者组中的一个消费者

    • 所有的消费者都在一个组中,那么这就变成了queue模型

    • 所有的消费者都在不同的组中,那么就完全变成了发布-订阅模型 (rabitmq的基本工作模式)

7.2)消息有序性

应用场景:

  • 即时消息中的单对单聊天和群聊,保证发送方消息发送顺序与接收方的顺序一致

  • 充值转账两个渠道在同一个时间进行余额变更,短信通知必须要有顺序
    在这里插入图片描述

topic分区中消息只能由消费者组中的唯一一个消费者处理,所以消息肯定是按照先后顺序进行处理的。但是它也仅仅是保证Topic的一个分区顺序处理,不能保证跨分区的消息先后处理顺序。 所以,如果你想要顺序的处理Topic的所有消息,那就只提供一个分区。

7.3)提交和偏移量

kafka不会像其他JMS队列那样需要得到消费者的确认,消费者可以使用kafka来追踪消息在分区的位置(偏移量)

消费者会往一个叫做_consumer_offset的特殊主题发送消息,消息里包含了每个分区的偏移量。如果消费者发生崩溃或有新的消费者加入群组,就会触发再均衡,没有消费者的确认就只能通过偏移量了

正常的情况在这里插入图片描述
异常

在这里插入图片描述

如果消费者2挂掉以后,会发生再均衡,消费者2负责的分区会被其他消费者进行消费

再均衡后不可避免会出现一些问题

问题一:

如果提交偏移量小于客户端处理的最后一个消息的偏移量,那么处于两个偏移量之间的消息就会被重复处理。

问题二:

在这里插入图片描述

如果提交的偏移量大于客户端的最后一个消息的偏移量,那么处于两个偏移量之间的消息将会丢失。

如果想要解决这些问题,还要知道目前kafka提交偏移量的方式:

提交偏移量的方式有两种,分别是自动提交偏移量和手动提交

  • 自动提交偏移量

当enable.auto.commit被设置为true,提交方式就是让消费者自动提交偏移量,每隔5秒消费者会自动把从poll()方法接收的最大偏移量提交上去

  • 手动提交 ,当enable.auto.commit被设置为false可以有以下三种提交方式

    • 提交当前偏移量(同步提交)

    • 异步提交

    • 同步和异步组合提交

1.提交当前偏移量(同步提交)

enable.auto.commit设置为false,让应用程序决定何时提交偏移量。使用commitSync()提交偏移量,commitSync()将会提交poll返回的最新的偏移量,所以在处理完所有记录后要确保调用了commitSync()方法。否则还是会有消息丢失的风险。

只要没有发生不可恢复的错误,commitSync()方法会一直尝试直至提交成功,如果提交失败也可以记录到错误日志里。

while (true){
    ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));
    for (ConsumerRecord<String, String> record : records) {
        System.out.println(record.value());
        System.out.println(record.key());
        try {
            consumer.commitSync();//同步提交当前最新的偏移量
        }catch (CommitFailedException e){
            System.out.println("记录提交失败的异常:"+e);
        }

    }
}

2.异步提交

手动提交有一个缺点,那就是当发起提交调用时应用会阻塞。当然我们可以减少手动提交的频率,但这个会增加消息重复的概率(和自动提交一样)。另外一个解决办法是,使用异步提交的API。

while (true){
    ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));
    for (ConsumerRecord<String, String> record : records) {
        System.out.println(record.value());
        System.out.println(record.key());
    }
    consumer.commitAsync(new OffsetCommitCallback() {
        @Override
        public void onComplete(Map<TopicPartition, OffsetAndMetadata> map, Exception e) {
            if(e!=null){
                System.out.println("记录错误的提交偏移量:"+ map+",异常信息"+e);
            }
        }
    });
}

3.同步和异步组合提交

异步提交也有个缺点,那就是如果服务器返回提交失败,异步提交不会进行重试。相比较起来,同步提交会进行重试直到成功或者最后抛出异常给应用。异步提交没有实现重试是因为,如果同时存在多个异步提交,进行重试可能会导致位移覆盖。

举个例子,假如我们发起了一个异步提交commitA,此时的提交位移为2000,随后又发起了一个异步提交commitB且位移为3000;commitA提交失败但commitB提交成功,此时commitA进行重试并成功的话,会将实际上将已经提交的位移从3000回滚到2000,导致消息重复消费。

try {
    while (true){
        ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));
        for (ConsumerRecord<String, String> record : records) {
            System.out.println(record.value());
            System.out.println(record.key());
        }
        consumer.commitAsync();
    }
}catch (Exception e){+
    e.printStackTrace();
    System.out.println("记录错误信息:"+e);
}finally {
    try {
        consumer.commitSync();
    }finally {
        consumer.close();
    }
}

springboot集成kafka

1.先写依赖

    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <!-- kafkfa -->
    <dependency>
        <groupId>org.springframework.kafka</groupId>
        <artifactId>spring-kafka</artifactId>
        <exclusions>
            <exclusion>
                <groupId>org.apache.kafka</groupId>
                <artifactId>kafka-clients</artifactId>
            </exclusion>
        </exclusions>
    </dependency>
    <dependency>
        <groupId>org.apache.kafka</groupId>
        <artifactId>kafka-clients</artifactId>
    </dependency>
    <dependency>
        <groupId>com.alibaba</groupId>
        <artifactId>fastjson</artifactId>
    </dependency>
</dependencies>

生产者端配置文件

server:
  port: 9991
spring:
  application:
    name: kafka-demo
  kafka:
    bootstrap-servers: 192.168.200.130:9092
    producer:
      retries: 10
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: org.apache.kafka.common.serialization.StringSerializer

消费者端

server:
  port: 9991
spring:
  application:
    name: kafka-demo
  kafka:
    bootstrap-servers: 192.168.200.130:9092
    consumer:
#这里消费者组就是服务名
      group-id: ${spring.application.name}
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      value-deserializer: org.apache.kafka.common.serialization.StringDeserializer

生产者

@RestController
public class HelloController {

    @Autowired
    private KafkaTemplate<String,String> kafkaTemplate;

    @GetMapping("/hello")
    public String hello(){
        kafkaTemplate.send("topic","程序员");
//如果是对象
 kafkaTemplate.send("topic",  User user = new User();
    user.setUsername("xiaowang");
    user.setAge(18);

    kafkaTemplate.send("user-topic", JSON.toJSONString(user));
);
        return "ok";
    }
}

消费者

package com.heima.kafka.listener;

import com.alibaba.fastjson.JSON;
import com.heima.kafka.pojo.User;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils;

@Component
public class HelloListener {

    @KafkaListener(topics = "user-topic")
    public void onMessage(String message){
        if(!StringUtils.isEmpty(message)){
            User user = JSON.parseObject(message, User.class);
            System.out.println(user);
        }

    }
}

springboot整合后和rabbitmq的使用方法差不多,大致内容和功能都可以实现,延迟队列和匹配routkey

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/206547.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SS6811H38V/1.6A 两通道 H 桥驱动芯片

SS6811H 为舞台灯光和其它电机一体化应用 提供一种双通道集成电机驱动方案。SS6811H 有 两路 H 桥驱动&#xff0c;每个 H 桥可提供最大输出电流 1.6A (在 24V 和 Ta 25C 适当散热条件下)&#xff0c;可驱 动两个刷式直流电机&#xff0c;或者一个双极步进电机&#xff0c;或 …

【shell】shell脚本编程作业

1 编写bash脚本&#xff0c;要求用户输入源目录和目标目录(绝对路径&#xff09;&#xff0c;然后列出源目录下所有的文件&#xff0c;并将这些文件拷贝到目标目录&#xff0c;并在文件名后面加上时间戳。&#xff08;提交源代码和运行截图&#xff09; if [ -d $1 ] || [ -d…

The Sandbox 携手 Sandsoft,与 Nuqtah 合作推动沙特阿拉伯的 Web3 发展

新的合作伙伴关系将增强创作者的能力&#xff0c;促进区块链生态系统的包容性。 The Sandbox 及其合作伙伴 Sandsoft 是移动游戏开发商和发行商&#xff0c;也是 AAA 人才驱动的投资者&#xff0c;他们非常高兴地宣布与 Nuqtah 建立新的合作伙伴关系&#xff0c;Nuqtah 是中东和…

SQL Sever 复习笔记【一】

SQL Sever 基础知识 一、查询数据第1节 基本 SQL Server 语句SELECT第2节 SELECT语句示例2.1 SELECT - 检索表示例的某些列2.2 SELECT - 检索表的所有列2.3 SELECT - 对结果集进行筛选2.4 SELECT - 对结果集进行排序2.5 SELECT - 对结果集进行分组2.5 SELECT - 对结果集进行筛选…

⭐ Unity 开发bug —— 打包后shader失效或者bug (我这里用Shader做两张图片的合并发现了问题)

1.这里我代码没啥问题~~~编辑器里也没毛病 void Start(){// 加载底图和上层图片string backgroundImagePath Application.streamingAssetsPath "/background.jpg";Texture2D backgroundTexture new Texture2D(2, 2);byte[] backgroundImageData System.IO.File.R…

ClassNotFoundException: org.apache.hive.spark.client.Job

hive使用的是3.13版本&#xff0c;spark是3.3.3支持hadoop3.x hive将engine从mr改成spark&#xff0c;通过beeline执行insert、delete时一直报错&#xff0c;sparkTask rpc关闭&#xff0c; 查看yarn是出现ClassNotFoundException: org.apache.hive.spark.client.Job。 开始…

Flutter应用程序加固的问题及解决方案

​&#x1f680;Flutter应用程序加固的问题及解决方案引言在移动应用开发中&#xff0c;为了保护应用程序的安全性&#xff0c;开发者需要对应用进行加固。在使用Flutter技术进行应用程序开发时&#xff0c;也需要注意应用程序的安全问题和加固方案。本文将介绍在Flutter应用程…

windows 此系统禁止运行脚本报错处理

windows 此系统禁止运行脚本报错处理 start 在命令行中运行执行的脚本&#xff0c;运行原理可以参考文章 《》本文主要介绍&#xff0c;如何处理window默认的对脚本运行的限制。 详细说明 出现报错如下&#xff1a; 主要原因就是系统默认禁止了在 powershell 环境下某些脚…

【Docker】Swarm内部的负载均衡与VIP

在Docker Swarm中&#xff0c;有两种方式可以实现内部的负载均衡&#xff1a;Service VIP和Routing Mesh。 Service VIP&#xff08;Virtual IP&#xff09;&#xff1a;Service VIP是一种基于VIP的负载均衡方式&#xff0c;它为每个服务分配一个虚拟IP地址。当请求到达Servic…

ROC曲线绘制和AUC计算

ROC曲线绘制和AUC计算 文章目录 ROC曲线绘制和AUC计算1.什么是ROC曲线&#xff1f;2.ROC曲线怎么看&#xff1f;3.怎么计算AUC&#xff1f;4.AUC的数值有什么含义&#xff1f;5.为什么要采用TPR和FPR来做ROC曲线6.TPR、FPR与灵敏度、特异性的关系是什么&#xff1f;7.ROC曲线在…

windows 查看mysql的错误日志

查找错误日志文件存储路径 用到的软件&#xff1a;everything 官网 voidtools 下载路径 https://www.voidtools.com/Everything-1.4.1.1024.x64-Setup.exe 直接点击下载即可 运行效果如下 我们知道mysql有个配置文件是my.ini&#xff0c;里面配置了相关信息 我们需要先…

正反转马达驱动芯片D6287F,内置马达停止时省电电路及热保护电路 。最大驱动电流 达1.0A 。广泛用于VCRs及音频设备等 电机中

D6287F 是 一 块 正 反 转 马 达 驱 动 电 路 &#xff0c;两 种 逻 辑 输 入 方 式 可 控 制 马 达 的 正 转 、 反 转 、 停 止 、 中 断 等 。 内 置 马 达 停 止 时 省 电 电 路 及 热 保 护 电 路 。 最 大 驱 动 电 流 达 1.0A 。 广 泛 用 于 VCRs及 音 频 设 备 等 电…

阿里云新版公共实例从注册账号到创建设备生成参数教程

1 注册阿里云 打开阿里云官网&#xff0c;点击右上角的登录/注册 打开的界面按照图片输入手机号注册 注册成功后&#xff0c;登录返回第一次打开的界面&#xff0c;点击控制台 点击控制台后界面如下 点击左上角的菜单&#xff0c;弹出新窗口&#xff0c;搜索物联网平台 开通物…

Linux常用命令——pwd命令

文章目录 简介pwd命令的参数常见用法及实例1. 基本用法2. 使用 -P 参数3. 使用 -L 参数注意事项 结论 简介 pwd&#xff08;Print Working Directory&#xff09;是Linux和Unix系统中的一个常用命令&#xff0c;用于显示当前工作目录的完整路径。这个命令对于定位用户当前所在…

XUbuntu22.04之安装OBS30.0强大录屏工具(一百九十五)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

使用 JDBC 连接 Neo4j(头歌)

文章目录 第1关&#xff1a;连接 Neo4j &#xff08;JDBC&#xff09;任务描述相关知识完成 JDBC 环境设置连接 Neo4j 对数据进行查询 编程要求测试说明答案测试前准备代码文件 第1关&#xff1a;连接 Neo4j &#xff08;JDBC&#xff09; 任务描述 本关任务&#xff1a;使用…

分布式仿真SNN的思考

我之前实现的仿真完全基于如下图设计的 将整体的网络构成见一个邻接表&#xff0c;突触和神经元作为类分别存储&#xff0c;所以当一个神经元发射脉冲时&#xff0c;很容易的将脉冲传输到突触指向的后神经元。但是在分布式方丈中&#xff0c;由多个进程仿真整体的网络&#xff…

浅谈智能配电房电力运维平台的开发与应用

安科瑞 华楠 摘 要&#xff1a;近年来&#xff0c;我国对电能的需求不断增加&#xff0c;智能电网建设越来越多。为实现对智能配电房设备运行状态的实时监测、态势觉察和态势可视化集中显示&#xff0c;基于智能配电房传感器和配电自动化站所终端单元&#xff08;DTU&#xf…

vue3 + mark.js | 实现文字标注功能

页面效果 具体实现 新增 1、监听鼠标抬起事件&#xff0c;通过window.getSelection()方法获取鼠标用户选择的文本范围或光标的当前位置。2、通过 选中的文字长度是否大于0或window.getSelection().isCollapsed (返回一个布尔值用于描述选区的起始点和终止点是否位于一个位置&…

STM32之定时器

目录 1、定时器介绍 1.定时器工作原理 2.定时器的分类 3.通用定时器主要功能介绍 4.定时器计数模式 5.定时器时钟源 6.定时器溢出时间计算公式 2、定时器中断的实验 codeMX的配置 代码编写 1.使用到的HAL库函数 1.中断回调函数需要我们重写 2. 在中断模式下启动TIM…