导出onnx文件
直接使用脚本
import torch
from mmseg.apis init_model
config_file = 'configs/fcn/fcn_r18-d8_4xb2-80k_cityscapes-512x1024.py'
checkpoint_file = 'fcn_r18-d8_512x1024_80k_cityscapes_20201225_021327-6c50f8b4.pth'
model = init_model(config_file, checkpoint_file, device='cuda:0')
torch.onnx.export(model, torch.zeros(1, 3, 1024, 2048).cuda(), "fcn.onnx", opset_version=11)
导出的模型结构如下:
或者通过mmdeploy导出:
from mmdeploy.apis import torch2onnx
from mmdeploy.backend.sdk.export_info import export2SDK
img = 'demo.JPEG'
work_dir = './work_dir/onnx/fcn'
save_file = './end2end.onnx'
deploy_cfg = 'mmdeploy/configs/mmseg/segmentation_onnxruntime_dynamic.py'
model_cfg = 'mmsegmentation/configs/fcn/fcn_r18-d8_4xb2-80k_cityscapes-512x1024.py'
model_checkpoint = 'checkpoints/fcn_r18-d8_512x1024_80k_cityscapes_20201225_021327-6c50f8b4.pth'
device = 'cpu'
# 1. convert model to onnx
torch2onnx(img, work_dir, save_file, deploy_cfg, model_cfg, model_checkpoint, device)
# 2. extract pipeline info for sdk use (dump-info)
export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)
onnxruntime推理
import cv2
import numpy as np
import onnxruntime
palette = [[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], [190, 153, 153], [153, 153, 153],
[250, 170, 30], [220, 220, 0], [107, 142, 35], [152, 251, 152], [70, 130, 180], [220, 20, 60],
[255, 0, 0], [0, 0, 142], [0, 0, 70], [0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32]]
if __name__=="__main__":
img = cv2.imread("demo/demo.png")
input = cv2.resize(img, (2048,1024))
input = input[:,:,::-1].transpose(2,0,1) #BGR2RGB和HWC2CHW
input = input.astype(dtype=np.float32)
input[0,:] = (input[0,:] - 123.675) / 58.395
input[1,:] = (input[1,:] - 116.28) / 57.12
input[2,:] = (input[2,:] - 103.53) / 57.375
input = np.expand_dims(input, axis=0)
onnx_session = onnxruntime.InferenceSession("fcn.onnx", providers=['CPUExecutionProvider'])
input_name = []
for node in onnx_session.get_inputs():
input_name.append(node.name)
output_name = []
for node in onnx_session.get_outputs():
output_name.append(node.name)
inputs = {}
for name in input_name:
inputs[name] = input
outputs = onnx_session.run(None, inputs)[0]
sem_seg = np.argmax(outputs[0], axis=0)
img = cv2.resize(img, (sem_seg.shape[1],sem_seg.shape[0]))
ids = np.unique(sem_seg)[::-1]
legal_indices = ids < len(palette)
ids = ids[legal_indices]
labels = np.array(ids, dtype=np.int64)
colors = [palette[label] for label in labels]
mask = np.zeros_like(img, dtype=np.uint8)
for label, color in zip(labels, colors):
mask[sem_seg == label, :] = color
masks = sem_seg == labels[:, None, None]
color_seg = (img * 0.5 + mask * 0.5).astype(np.uint8)
cv2.imwrite("result.png", color_seg)
mmdeploy推理:
from mmdeploy_runtime import Segmentor
import cv2
import numpy as np
img = cv2.imread('mmsegmentation/demo/demo.png')
# create a classifier
segmentor = Segmentor(model_path='work_dir/onnx/fcn', device_name='cpu')
#segmentor = Segmentor(model_path='work_dir/trt/fcn', device_name='cuda')
# perform inference
seg = segmentor(img)
# visualize inference result
## random a palette with size 256x3
palette = np.random.randint(0, 256, size=(256, 3))
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
for label, color in enumerate(palette):
color_seg[seg == label, :] = color
# convert to BGR
color_seg = color_seg[..., ::-1]
img = img * 0.5 + color_seg * 0.5
img = img.astype(np.uint8)
cv2.imwrite('result.png', img)