opencv-利用DeepLabV3+模型进行图像分割去除输入图像的背景

分离图像中的人物和背景通常需要一些先进的图像分割技术。GrabCut是一种常见的方法,但是对于更复杂的场景,可能需要使用深度学习模型。以下是使用深度学习模型(如人像分割模型)的示例代码:

#导入相关的库
import cv2
import numpy as np
import torch
import torchvision.transforms as T
from torchvision.models.segmentation import deeplabv3_resnet101

def remove_background_with_deep_learning(image_path):
    # 读取图像
    image = cv2.imread(image_path)

    # 将图像转换为RGB格式
    image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) #将图像从BGR格式转换为RGB格式,因为深度学习模型通常使用RGB。

    # 定义图像预处理和转换
    transform = T.Compose([  #定义了图像的预处理和转换步骤,包括将图像转换为PyTorch张量和标准化。
        T.ToTensor(),  # 将图像转换为PyTorch张量
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),  # 标准化图像
    ])

    # 对图像进行预处理和转换
    input_tensor = transform(image_rgb)
    input_batch = input_tensor.unsqueeze(0)  # 添加一个维度,使其成为批处理的一部分

    # 加载预训练的DeepLabV3模型
    model = deeplabv3_resnet101(pretrained=True)
    model.eval()  # 设置为评估模式,不进行梯度更新

    # 运行模型并获取分割掩模
    with torch.no_grad(): #上下文管理器,用于关闭梯度计算,以提高推断速度。
        output = model(input_batch)['out'][0]#运行模型并获取输出。
    output_predictions = output.argmax(0)  # 获取模型输出中预测类别的索引

    # 将分割结果转换为二进制掩模
    mask = (output_predictions == 15).numpy()  # 在DeepLabV3模型中,15是人物的标签

    # 将原始图像与二进制掩模相乘,去除背景
    result = image * mask[:, :, np.newaxis]

    # 显示结果
    cv2.imshow('Original Image', image)
    cv2.imshow('Removed Background', result)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
# 使用示例
remove_background_with_deep_learning(r"C:\Users\mzd\Desktop\opencv\images.jpg")

在这里插入图片描述
代码解释:
理解代码可能需要一些基本的编程和机器学习知识,以下是逐步解释代码的主要部分:

  1. 导入库: 首先,导入了用于图像处理和深度学习的库,包括OpenCV(cv2)、PyTorch和TorchVision。

  2. 定义函数: remove_background_with_deep_learning 是一个用于去除图像背景的函数。它接受一个图像路径作为参数。

  3. 读取和转换图像: 使用OpenCV读取图像,然后将图像转换为RGB格式。机器学习模型通常使用RGB格式。

  4. 图像预处理和转换: 定义了一系列图像预处理和转换步骤,将图像转换为PyTorch张量并进行标准化。

  5. 加载预训练模型: 使用deeplabv3_resnet101 模型,它是一个预训练的深度学习模型,专门用于图像分割任务。

  6. 运行模型并获取分割掩模: 将预处理后的图像输入到模型中,获取模型输出中的分割掩模。在这里,15是代表人物的类别标签。

  7. 将分割结果转换为二进制掩模: 将模型输出的分割结果转换为二进制掩模,其中值为1的像素表示属于人物的区域。

  8. 去除背景: 将原始图像与二进制掩模相乘,实现去除背景效果。

在这个函数中,将原始图像与二进制掩模相乘的目的是将背景部分置零,从而实现去除背景的效果。这是基于掩模的思想,其中掩模是一个与原始图像大小相同的二维数组,其中元素的值为0或1,用于指示哪些像素应该保留(值为1)或去除(值为0)。
具体流程如下:

  1. mask = (output_predictions == 15).numpy():通过模型的输出,生成一个二进制掩模。在这里,假设标签15对应于人物。掩模中值为1的像素表示人物,值为0的像素表示背景。
  2. result = image * mask[:, :, np.newaxis]:通过将原始图像与二进制掩模相乘,实现了以下效果:
    • 当掩模中对应位置的值为1(人物部分),相乘结果保持原始图像的颜色值;
    • 当掩模中对应位置的值为0(背景部分),相乘结果将对应位置的像素值置零。 这样,通过像素级别的相乘操作,将背景部分的像素值置零,达到了去除背景的效果。最终,result就是去除背景后的图像。

这是一种简单而有效的背景去除方法,尤其在利用深度学习模型进行图像分割的场景中得到了广泛应用。

  1. 显示结果: 使用OpenCV的 imshow 函数显示原始图像和去除背景后的图像。

  2. 使用示例: 调用 remove_background_with_deep_learning 函数,传递图像路径,这里的路径是 'path/to/your/image.jpg'。这是整个程序的入口。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/191921.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

VMware上面安装部署centos7镜像系统【详细含镜像】

VMware上面安装部署centos7镜像系统【详细含镜像】 废话不多说直接开始 下载centos7镜像 网上有好多,但是我相信来看小编文章的基本上应该都有centos7的镜像了吧,毕竟咱们都是同一类人,哈哈不卖关子了,小编直接给大家一个百度云盘…

OpenCV项目开发实战--基本图像分割图生成器

欢迎回到我们有关 OpenCV 的系列文章以及我们如何利用其强大的图像预处理功能。在我们之前的文章的基础上,今天我们向您展示如何创建基本的图像分割图生成器。 具体来说,我们的图像掩模应该帮助识别每个像素是否: 背景的一部分(指定值为0)在感兴趣的对象的边缘(指定值 …

答题活动小程序竞品分析

答题小程序竞品分析 答题活动小程序竞品分析 知识竞赛小程序竞品分析 ~ 从2020年开始,机缘巧合,我开始涉及答题小程序的开发,从最初的刷题场景到答题活动场景,已经走过了三个年头,这期间我开发的答题小程序产品也逐…

laravel8中常用路由使用(笔记四)

目录 1、框架路由目录统一放该目录 2、基本路由,路由都调用Route方法 3、控制器使用路由 4、路由参数 5、路由组 6、命名路由 7、命令查看当前路由列表 8、路由缓存 在Laravel 8中,路由定义了应用程序中接受请求的方式。它们定义了URL和相应的控制器方法之间的…

ros2智能小车中STM32地盘需要用到PWM的模块

我做的地盘比较简单,使用了一下模块: 4个直流减速电机,(每个模块用到了一个PWM)---这会通过L298N的ENA,ENB来实现控制 光电对射测速模块(不用PWM) 超声波测距模块(不用PWM,只需要…

Ceph----CephFS文件系统的使用:详细实践过程实战版

CephFS 介绍 是一个基于 ceph 集群 且兼容 POSIX 标准的文件系统。 创建 cephfs 文件系统时 需要在 ceph 集群中添加 mds 服务,该服务 负责处理 POSIX 文件系统中的 metadata 部分, 实际的数据部分交由 ceph 集群中的 OSD 处理。 cephfs 支持以内核模块…

中南大学2021级云计算复习笔记

选择题 20分 10个 填空题 10分 10个 判断题 10分 5个 简答题 20分 4个 编程题 40分 2个 云计算基础 云计算的概念:云计算是一种商业计算模型。它将计算任务分布在大量计算机构成的资源池上,使各种应用系统能够根据需要获取计算力、存储空间和信息服…

Blender学习笔记:做一个小车

文章目录 轮廓车窗轮胎和车灯 教程地址:八个案例教程带你从0到1入门blender【已完结】 轮廓 1 创建立方体,将其拉伸成长方体。Tab进入编辑模式;CtrlR添加一个纵向的循环边;3进入面模式;E选中后上方的面向上拉伸&…

蓝桥杯-动态规划-子数组问题

目录 一、乘积最大数组 二、乘积为正数的最长子数组长度 三、等差数列划分 四、最长湍流子数组 心得: 最重要的还是状态表示,我们需要根据题的意思,来分析出不同的题,不同的情况,来分析需要多少个状态 一、乘积最…

7.前端--CSS-字体属性【2023.11.26】

CSS字体属性 CSS Fonts (字体)属性用于定义字体样式、粗细、大小、和字形。 1.文字样式 CSS 使用 font-style 属性设置文本的风格。 语法: p { font-style: normal; }属性: 2字体粗细 CSS 使用 font-weight 属性设置文本字体的粗细。 语法&#xff1a…

Deep Learning(wu--46)

文章目录 ContentsBeginBasic逻辑回归SGD导数计算图(反向传播)向量化广播numpy Neural Network向量化激活函数梯度下降深层表示反向传播 Contents Begin Basic 逻辑回归 SGD 导数 计算图(反向传播) 向量化 广播 numpy Neural Netw…

嵌入式八股 | 笔试面试 | 校招秋招 | 题目精选

嵌入式八股精华版1.0所有216道题目如下: 欢迎关注微信公众号【赛博二哈】并加入嵌入式求职交流群。提供简历模板、学习路线、岗位整理等 欢迎加入知识星球【嵌入式求职星球】获取完整嵌入式八股。 提供简历修改、项目推荐、求职规划答疑。另有各城市、公…

Grafana采用Nginx反向代理

一、场景介绍 在常规操作中,一般情况下不会放开许多端口给外部访问,特别是直接 ip:port 的方式开放访问。但是 Grafana 的请求方式在默认情况下是没有任何规律可寻的。 为了满足业务需求(后续通过 Nginx 统一一个接口暴露 N 个服务&#xf…

基于Java SSM框架+Vue留学生交流互动论坛网站项目【项目源码+论文说明】计算机毕业设计

基于java的SSM框架Vue实现学生交流互动论坛网站演示 摘要 21世纪的今天,随着社会的不断发展与进步,人们对于信息科学化的认识,已由低层次向高层次发展,由原来的感性认识向理性认识提高,管理工作的重要性已逐渐被人们所…

【开源】基于Vue和SpringBoot的个人健康管理系统

项目编号: S 040 ,文末获取源码。 \color{red}{项目编号:S040,文末获取源码。} 项目编号:S040,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 健康档案模块2.2 体检档案模块2.3 健…

python爬取招聘网站信息

废话不多说,直接上代码,开箱即用。该文件抓取的是智联招聘网站的招聘信息,可以根据需要设置输入搜索关键词和查找页数,就会得到结果,可以搜索到每个岗位的岗位名称、公司名称、学历要求、公司规模、福利待遇、行业、薪…

【Web】PHP反序列化刷题记录

目录 ①[NISACTF 2022]babyserialize ②[NISACTF 2022]popchains ③[SWPUCTF 2022 新生赛]ez_ez_unserialize ④[GDOUCTF 2023]反方向的钟 再巩固下基础 ①[NISACTF 2022]babyserialize <?php include "waf.php"; class NISA{public $fun"show_me_fla…

【腾讯云云上实验室】用向量数据库在金融信用数据库分析中的实战运用

一、前言 这篇文章将带领读者探索数据库的多样化解决方案及其演进历程&#xff0c;特别关注向量数据库的重要性和在实际项目中的应用。 通过深入剖析腾讯云向量数据库及其在金融信用数据库分析中的实战运用&#xff0c;为读者提供全面而实用的指南&#xff0c;帮助他们理解、…

Node——Node.js简介

Node.js是一个基于Chrome V8引擎的JavaScript运行时环境&#xff0c;它能够让JavaScript脚本运行在服务端&#xff0c;这使得JavaScript成为与PHP、Python等服务端语言平起平坐的脚本语言。 1、认识Node.js Node.js是当今网站开发中非常流行的一种技术&#xff0c;它以简单易…

什么是 dropblock

大家好啊&#xff0c;我是董董灿。 之前介绍过 dropout 算法&#xff0c;它在训练神经网络中&#xff0c;可以随机丢弃神经元&#xff0c;是一种防止网络过拟合的方法。 但是在卷积神经网络中&#xff0c;dropout 的表现却不是很好&#xff0c;于是研究人员又搞了一个“结构化…