scipy 笔记:scipy.spatial.distance

1 pdist

计算n维空间中观测点之间的成对距离。

scipy.spatial.distance.pdist(
    X, 
    metric='euclidean', 
    *, 
    out=None, 
    **kwargs)

1.1 主要参数

X一个m行n列的数组,表示n维空间中的m个原始观测点
metric使用的距离度量
out输出数组。如果非空,压缩的距离矩阵Y将存储在此数组中

1.2 举例

import numpy as np
from scipy.spatial.distance import pdist

x = np.array([[2, 0, 2], 
              [2, 2, 3], 
              [-2, 4, 5], 
              [0, 1, 9], 
              [2, 2, 4]])
#5个元素,每个元素3维

pdist(x)
#array([2.23606798, 6.40312424, 7.34846923, 2.82842712, 4.89897949,
       6.40312424, 1.        , 5.38516481, 4.58257569, 5.47722558])
'''
10个元素,分别表示:

第1个点和第2个点之间的距离
第1个点和第3个点之间的距离
第1个点和第4个点之间的距离
第1个点和第5个点之间的距离
第2个点和第3个点之间的距离
第2个点和第4个点之间的距离
第2个点和第5个点之间的距离
第3个点和第4个点之间的距离
第3个点和第5个点之间的距离
第4个点和第5个点之间的距离
'''

2 cdist

计算两个输入集合中每对元素之间的距离

scipy.spatial.distance.cdist(
    XA, 
    XB, 
    metric='euclidean', 
    *, 
    out=None, 
    **kwargs)

2.1 主要参数

XAmA*n的矩阵,表示mA个元素,每个元素n维特征
XBmBn的矩阵,表示mB个元素,每个元素n维特征
metric使用的距离度量
out输出数组(mA*mB)。如果非空,压缩的距离矩阵Y将存储在此数组中

2.2 举例

import numpy as np
from scipy.spatial.distance import cdist

x = np.array([[2, 0, 2], 
              [2, 2, 3], 
              [-2, 4, 5], 
              [0, 1, 9], 
              [2, 2, 4]])

cdist(x,x)
'''
array([[0.        , 2.23606798, 6.40312424, 7.34846923, 2.82842712],
       [2.23606798, 0.        , 4.89897949, 6.40312424, 1.        ],
       [6.40312424, 4.89897949, 0.        , 5.38516481, 4.58257569],
       [7.34846923, 6.40312424, 5.38516481, 0.        , 5.47722558],
       [2.82842712, 1.        , 4.58257569, 5.47722558, 0.        ]])
'''

y=[[1,2,3]]
cdist(x,y)
'''
array([[2.44948974],
       [1.        ],
       [4.12310563],
       [6.164414  ],
       [1.41421356]])
'''

cdist(y,x)
'''
array([[2.44948974, 1.        , 4.12310563, 6.164414  , 1.41421356]])
'''

3 squareform

将距离向量的向量形式转换为方阵形式的距离矩阵,反之亦然。

scipy.spatial.distance.squareform(X, force='no', checks=True)

3.1 举例

import numpy as np
from scipy.spatial.distance import *

x = np.array([[2, 0, 2], 
              [2, 2, 3], 
              [-2, 4, 5], 
              [0, 1, 9], 
              [2, 2, 4]])

dist_vec=pdist(x)
dist_vec
'''
array([2.23606798, 6.40312424, 7.34846923, 2.82842712, 4.89897949,
       6.40312424, 1.        , 5.38516481, 4.58257569, 5.47722558])
'''

dist_mat=squareform(dist_vec)
dist_mat
'''
array([[0.        , 2.23606798, 6.40312424, 7.34846923, 2.82842712],
       [2.23606798, 0.        , 4.89897949, 6.40312424, 1.        ],
       [6.40312424, 4.89897949, 0.        , 5.38516481, 4.58257569],
       [7.34846923, 6.40312424, 5.38516481, 0.        , 5.47722558],
       [2.82842712, 1.        , 4.58257569, 5.47722558, 0.        ]])
'''

squareform(dist_mat)
'''
array([2.23606798, 6.40312424, 7.34846923, 2.82842712, 4.89897949,
       6.40312424, 1.        , 5.38516481, 4.58257569, 5.47722558])
'''

4 directed_hausdorff

  • 计算两个二维数组之间的定向豪斯多夫距离
  • 通常用于衡量两个点集合的相似性
scipy.spatial.distance.directed_hausdorff(u, v, seed=0)

数学笔记/scipy 笔记:豪斯多夫距离(Hausdorff )_python 豪斯多夫距离-CSDN博客

4.1 主要参数

u

(M,N)大小的数组

M 表示点的数量,N 表示每个点的维度

v

(O,N)大小的数组

O 表示点的数量,N 表示每个点的维度

4.2 返回内容

duv 之间的定向豪斯多夫距离
index_1 在数组u中贡献豪斯多夫对的点的索引
index_2在数组v中贡献豪斯多夫对的点的索引

4.3 举例

import numpy as np
from scipy.spatial.distance import *

u = np.array([(1.0, 0.0),
              (0.0, 1.0),
              (-1.0, 0.0),
              (0.0, -1.0)])
v = np.array([(2.0, 0.0),
              (0.0, 2.0),
              (-2.0, 0.0),
              (0.0, -4.0)])


directed_hausdorff(u,v)
#(2.23606797749979, 3, 0)

5 is_valid_dm

判断输入数组是否为有效的距离矩阵

scipy.spatial.distance.is_valid_dm(
    D, 
    tol=0.0, 
    throw=False, 
    name='D', 
    warning=False)

5.1 主要参数

D用于测试有效性的候选对象
tol距离矩阵应该是对称的。tol是条目ij和ji之间的最大差异,以便将距离度量视为对称

5.2 举例

import numpy as np
from scipy.spatial.distance import *

d = np.array([[0.0, 1.1, 1.2, 1.3],
              [1.1, 0.0, 1.0, 1.4],
              [1.2, 1.0, 0.0, 1.5],
              [1.3, 1.4, 1.5, 0.0]])
is_valid_dm(d)
#True

is_valid_dm([[0, 2, 2], 
             [2, 0, 2]])
#形状不对


is_valid_dm([[0, 1, 1], 
             [1, 2, 3], 
             [1, 3, 0]])
#对角线不为0


is_valid_dm([[0, 1, 3], 
             [2, 0, 1], 
             [3, 1, 0]])
#不对称

6 is_valid_y

scipy.spatial.distance.is_valid_y(
    y, 
    warning=False, 
    throw=False, 
    name=None)

判断输入数组是否为有效的压缩距离矩阵。

压缩距离矩阵必须是1维的numpy数组。它们的长度必须是一些正整数n的二项系数C_n^2

6.1 主要参数

y压缩距离矩阵

6.2 举例

import numpy as np
from scipy.spatial.distance import *

is_valid_y([1.0, 1.2, 1.0, 0.5, 1.3, 0.9])
#True
#长度为6,合理长度,所以返回True

is_valid_y([1.0, 1.2, 1.0, 0.5, 1.3, 0.9,1.5])
#False
#长度为7,不合理长度,所以返回False

7 两个数字向量之间的距离

7.1 braycurtis

计算两个一维数组之间的布雷-柯蒂斯距离

scipy.spatial.distance.braycurtis(u, v, w=None)

7.1.1 主要参数

u

(N,)    输入数组

v(N,)    输入数组
w(N,)    u和v中每个值的权重

7.1.2 举例

基本上后面都是一样的,就不举例了

import numpy as np
from scipy.spatial.distance import *

braycurtis([1,1,0],[0,1,0])

#0.3333333333333333

7.2 canberra

scipy.spatial.distance.canberra(u, v, w=None)

7.3 chebyshev

scipy.spatial.distance.chebyshev(u, v, w=None)

7.4 cityblock

曼哈顿距离

scipy.spatial.distance.cityblock(u, v, w=None)

7.5 correlation

scipy.spatial.distance.correlation(u, v, w=None, centered=True)

7.6 cosine

scipy.spatial.distance.cosine(u, v, w=None)

7.7 euclidean

scipy.spatial.distance.euclidean(u, v, w=None)

7.8 jensenshannon

scipy.spatial.distance.jensenshannon(p, q, base=None, *, axis=0, keepdims=False)

两个概率向量p,q之间的JS距离

如果p和q的总和不为1.0,该程序将对其进行归一化

7.8.1 主要参数

p左侧概率向量
q右侧概率向量
base用于计算输出的对数底数
axis

沿着哪个轴计算JS距离

7.8.2 举例

import numpy as np
from scipy.spatial.distance import *

jensenshannon([1.0, 0.0, 0.0], [0.0, 1.0, 0.0])
#0.8325546111576977


jensenshannon([1.0, 0.0, 0.0], [0.0, 1.0, 0.0],2)
#1.0


a = np.array([[1, 2, 3, 4],
              [5, 6, 7, 8],
              [9, 10, 11, 12]])
b = np.array([[13, 14, 15, 16],
              [17, 18, 19, 20],
              [21, 22, 23, 24]])
jensenshannon(a, b, axis=0)
#array([0.19542878, 0.14476971, 0.11383771, 0.09276358])

jensenshannon(a, b, axis=1)
#array([0.14023394, 0.03991063, 0.02018153])

7.9 mahalanobis

马氏距离

scipy.spatial.distance.mahalanobis(u, v, VI)

7.9.1 主要参数

u输入向量
v输入向量
VI协方差矩阵的逆,也即上面公式中的V^{-1}

7.9.2 举例

import numpy as np
from scipy.spatial.distance import *

iv = [[1, 0.5, 0.5], [0.5, 1, 0.5], [0.5, 0.5, 1]]

mahalanobis([1, 0, 0], [0, 1, 0], iv)
#1.0

7.10 minkowski

闵可夫斯基距离

scipy.spatial.distance.minkowski(u, v, p=2, w=None)

7.11 seuclidean 

标准欧氏距离

scipy.spatial.distance.seuclidean(u, v, V)

V[i]是针对点集中所有第i个分量计算得到的方差

7.12 sqeuclidean

平方欧氏距离

scipy.spatial.distance.sqeuclidean(u, v, w=None)

8 两个布尔向量距离

8.1 dice

scipy.spatial.distance.dice(u, v, w=None)

CTF表示u是T,v是F,其他类似

8.2 hamming

scipy.spatial.distance.hamming(u, v, w=None)

8.3 jaccard

scipy.spatial.distance.jaccard(u, v, w=None)

8.4 kulczynski1

scipy.spatial.distance.kulczynski1(u, v, *, w=None)

8.5 rogerstanimoto

scipy.spatial.distance.rogerstanimoto(u, v, w=None)

8.6 russellrao

8.7 sokalmichener

scipy.spatial.distance.sokalmichener(u, v, w=None)

8.8 sokalsneath

scipy.spatial.distance.sokalsneath(u, v, w=None)

8.9 yule

scipy.spatial.distance.yule(u, v, w=None)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/190029.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Dempster-Shafer(D-S)证据理论的基本定义和详细分析,优点,缺点,应用!!(系列1)

文章目录 前言一、D-S证据理论的应用:二、D-S证据理论的优点:三、D-S证据理论的缺陷:四、D-S组合规则:总结 前言 Dempster-Shafer(D-S)证据理论是一种不精确推理理论,也称为Dempster/Shafer证据…

深度学习第2天:RNN循环神经网络

☁️主页 Nowl 🔥专栏《机器学习实战》 《机器学习》 📑君子坐而论道,少年起而行之 文章目录 介绍 记忆功能对比展现 任务描述 导入库 处理数据 前馈神经网络 循环神经网络 编译与训练模型 模型预测 可能的问题 梯度消失 梯…

python 笔记 根据用户轨迹+基站位置,估计基站轨迹+RSRP

1 问题描述 已知用户实际的轨迹,和基站的位置,能不能得到用户所连接的基站,以及基站的信号强度RSRP? 1.1 几个假设 这里我们做几个假设: 每个用户有80%的概率连接最近的基站,有20%的概率选择其他的基站连…

在mysql存储过程中间部分,使用游标遍历动态结果集(游标动态传参使用)

mysql游标动态传参实现(动态游标) 1.问题2.需求描述3.实现3.1.使用3.2.代码(直接看这都可以) 1.问题 众所周知,mysql存储过程功能是没有oracle的包功能强大的,但是在去O的趋势下,mysql存储过程的…

使用git下载远程所有分支到本地

使用git下载远程所有分支到本地: 打开gitbash 输入以下命令即可: git clone git地址 cd git文件夹 git branch -r | grep -v \-> | while read remote; do git branch --track "${remote#origin/}" "$remote"; done git fetch -…

灭火器二维码巡检卡制作教程

每个消防器材生成独立二维码,取代传统纸质巡检卡,微信扫码巡检,巡检记录汇总后台,随时登录后台查看导出数据,管理人员绑定凡尔码小程序即可随时了解消防巡检完成情况。 生成灭火器巡检码流程图: 1、开通后…

百家号MCN是什么?百家号MCN禁止拉子账号怎么解决?

在当今数字化时代,社交媒体平台已成为人们获取信息、分享观点和创作内容的重要渠道之一。百家号作为百度旗下的自媒体平台,吸引了众多创作者和机构入驻,以分享优质内容并获得收益。在百家号上,MCN矩阵扮演着重要的角色&#xff0c…

目标检测原理

一、什么是目标检测 目标检测的任务是找出图像中所有感兴趣的目标(物体),确定他们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状、姿态,再加上光照、遮挡等因素的干扰,目…

如何在Node.js和Express中设置TypeScript(2023年)

如何在Node.js和Express中设置TypeScript(2023年) 在这篇文章中,我们将介绍在Express应用程序中设置TypeScript的最佳方法,了解与之相关的基本限制。 文章目录 如何在Node.js和Express中设置TypeScript(2023年&#x…

RT-DETR 更换损失函数之 SIoU / EIoU / WIoU / Focal_xIoU

文章目录 更换方式CIoUDIoUEIoUGIoUSIoUWIoUFocal_CIoUFocal_DIoUFocal_EIoUFocal_GIoUFocal_SIoU提示更换方式 第一步:将ultralytics/ultralytics/utils/metrics.py文件中的bbox_iou替换为如下的代码:class

图书管理系统源码,图书管理系统开发,图书借阅系统源码三框架设计原理和说明

TuShuManger项目简介和创建 这里一共设计了6个项目,主要是借助三层架构思想分别设计了主要的三层,包括model实体层,Dal数据库操作层,Bll业务调用层,其他有公共使用项目common层,DButitly提取出来的数据库访问层,下面我们分别创建每个项目和开始搭建整个过程 TuShuManger…

第二十一章 解读XML与JSON文件格式(工具)

XML 带分隔符的文件仅有两维的数据:行 & 列。如果我们想在程序之间交换数据结构,需要一种方法把层次结构,序列,集合和其它的数据结构编码成文本。 今天要说的 XML 是最突出的处理上述这种转换的标记格式,它使用标…

【深度学习】如何找到最优学习率

经过了大量炼丹的同学都知道,超参数是一个非常玄乎的东西,比如batch size,学习率等,这些东西的设定并没有什么规律和原因,论文中设定的超参数一般都是靠经验决定的。但是超参数往往又特别重要,比如学习率&a…

Seurat Tutorial 1:标准分析流程,基于 PBMC 3K 数据集

目录 1 设置 Seurat 对象2 标准预处理工作流程 2.1 QC 和选择细胞进行进一步分析3 数据归一化4 识别高变特征(特征选择)5 标准化数据6 执行线性降维7 确定数据集的维度8 细胞聚类9 运行非线性降维 (UMAP/tSNE)10 寻找差异表达特征(cluster b…

OSG编程指南<十二>:OSG二三维文字创建及文字特效

1、字体基础知识 适当的文字信息对于显示场景信息是非常重要的。在 OSG 中,osgText提供了向场景中添加文字的强大功能,由于有第三方插件 FreeType 的支持,它完全支持TrueType 字体。很多人可能对 FreeType 和 TrueType 还不太了解&#xff0c…

小程序项目:springboot+vue基本微信小程序的宠物领养系统

项目介绍 当今科技发展迅速,交通环境也变得越来越复杂。人们的出行方式变得多元化,这给视障人士带来了一定的困扰。而导盲犬可以帮助视障人士外出行走,提高他们的生活质量。在我国,导盲犬的数量远远少于视障人士的数量。由于导盲…

WPF绘图技术介绍

作者:令狐掌门 技术交流QQ群:675120140 csdn博客:https://mingshiqiang.blog.csdn.net/ 文章目录 WPF绘图基本用法绘制直线在XAML中绘制直线在C#代码中绘制直线使用Path绘制直线注意 矩形绘制在XAML中绘制矩形在C#代码中绘制矩形设置矩形的位…

<JavaEE> Java中线程有多少种状态(State)?状态之间的关系有什么关系?

目录 一、系统内核中的线程状态 二、Java中的线程状态 一、系统内核中的线程状态 状态说明就绪状态线程已经准备就绪,随时可以接受CPU的调度。阻塞状态线程处于阻塞等待,暂时无法在CPU中执行。 二、Java中的线程状态 相比于系统内核,Java…

火锅店管理系统外卖点餐配送小程序的效果

火锅是餐饮行业重要的组成部分,在每个地方都受到追捧,其从业商家众多,头部连锁品牌也不少,近些年行业市场规模也一直增加,而随着消费升级及数字化转型,传统火锅店经营痛点不少: 火锅店的需求非…

智能优化算法应用:基于蚁狮算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于蚁狮算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于蚁狮算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.蚁狮算法4.实验参数设定5.算法结果6.参考文献7.MATLAB…