智能优化算法应用:基于粒子群算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于粒子群算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于粒子群算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.粒子群算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用粒子群算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.粒子群算法

粒子群算法原理请参考:网络博客
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

粒子群算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明粒子群算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/189867.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C++局域网从服务器获取已连接用户的列表(linux to linux)

目录 服务器端 代码 客户端 代码解析 服务器端 原理 遇到的阻碍以及解决办法 客户端 原理 遇到的阻碍以及解决办法 运行结果截图 总结 服务器端 代码 #include <sys/types.h> #include <sys/socket.h> #include <stdio.h> #include <netinet…

安捷伦E4404B频谱分析仪,100 Hz 至 6.7 GHz

E4404B是安捷伦ESA-E系列频谱分析仪&#xff0c;它是一款能够适应未来发展需求的中高端频谱分析仪解决方案。该系列在频谱分析仪的测量速度、动态范围、精度和功率分辨能力等方面&#xff0c;都为类似价位的产品树立了性能标杆。其灵活的平台设计使得研发、制造和现场服务工程师…

这一款 Mac 系统终端工具,已经用的爱不释手了!

&#x1f525;&#x1f525;&#x1f525;作为程序员或者运维管理人员&#xff0c;我们经常需要使用终端工具来进行服务器管理及各种操作&#xff0c;比如部署项目、调试代码、查看/优化服务、管理服务器等。 相信大家用的最多的终端工具就是 Xshell、iTerm2和Mobaxterm&#…

利用ngrok实现内网穿透(全网最详细教程)

准备工具&#xff1a; 1、phpstudy 用于在本地搭建网站 2、ngrok 用于将自己的本地端口暴露到公网上&#xff0c;从而实现内网穿透 文章开始前给大家分享一个学习人工智能的网站&#xff0c;通俗易懂&#xff0c;风趣幽默 人工智能https://www.captainbed.cn/myon/ ~~~~~…

ESP32和ESP8266的ESP-MESH

ESP32和ESP8266的ESP-MESH 功能介绍一、介绍ESP-MESH二、安装painlessMesh库三、ESP-MESH基本示例&#xff08;广播消息&#xff09;四、示范 功能介绍 了解如何使用ESP-MESH网络协议通过ESP32和ESP8266 NodeMCU板构建网状网络。 ESP-MESH允许多个设备&#xff08;节点&#x…

单例模式与多线程

目录 前言 正文 1.立即加载/饿汉模式 2.延迟加载/懒汉模式 1.延迟加载/懒汉模式解析 2.延迟加载/懒汉模式的缺点 3.延迟加载/懒汉模式的解决方案 &#xff08;1&#xff09;声明 synchronized 关键字 &#xff08;2&#xff09;尝试同步代码块 &#xff08;3&am…

vue 中 js 金额数字转中文

参考&#xff1a;js工具函数之数字转为中文数字和大写金额_js封装工具类函数金额大写-CSDN博客 我使用的框架vol.core。 客户需求要将录入框的金额数字转换成中文在旁边显示&#xff0c;换了几种函数&#xff0c;最终确定如下函数 function changeToChineseMoney(Num) {//判断…

Quartz定时任务基础

springBoot有一个定时执行某个方法的 注解&#xff1a; Scheduled 可以满足挺多的需求&#xff0c;但是到了一些场景&#xff0c;就显得比较麻烦&#xff0c;比如&#xff1a; 机器待机五分钟后执行切换待机状态。如果是按照使用Scheduled注解&#xff0c;就得持久化一个表&…

【Java SE】 带你走近Java的抽象类与接口

&#x1f339;&#x1f339;&#x1f339;【JavaSE】专栏&#x1f339;&#x1f339;&#x1f339; &#x1f339;&#x1f339;&#x1f339;个人主页&#x1f339;&#x1f339;&#x1f339; &#x1f339;&#x1f339;&#x1f339;上一篇文章&#x1f339;&#x1f339;&…

2018年3月26日 Go生态洞察:Go包版本管理提案分析

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

java springboot测试类虚拟MVC环境 匹配请求头指定key与预期值是否相同

上文 java springboot测试类虚拟MVC环境 匹配返回值与预期内容是否相同 (JSON数据格式) 版 中 我们展示 json匹配内容的方式 那么 本文我们来看看Content-Type属性的匹配方式 首先 我们从返回体可以看出 Content-Type 在请求头信息 Headers 中 我们直接将测试类代码更改如下 …

C#,《小白学程序》第二十七课:大数四则运算之“运算符重载”的算法及源程序

1 文本格式 using System; using System.Text; using System.Collections; using System.Collections.Generic; /// <summary> /// 大数的四则&#xff08;加减乘除&#xff09;运算 /// 及其运算符重载&#xff08;取余数&#xff09; /// </summary> public cl…

在项目中集成marsUI

拷贝文件夹到目标项目 集成 安装相关依赖 npm i --save ant-design-vue4.x npm i less npm i nprogress npm i consola npm i echarts npm i vue-color-kit npm i icon-park/svg npm i vite-plugin-style-import 配置Vite文件 使用 效果

Leetcode—828.统计子串中的唯一字符【困难】

2023每日刷题&#xff08;四十一&#xff09; Leetcode—828.统计子串中的唯一字符 算法思想 枚举所有种类字母在s中出现的位置&#xff0c;分别统计只包含这个字母不包含该类字母中其他字母的子串个数 实现代码 int uniqueLetterString(char* s) {int len strlen(s);cha…

电子学会C/C++编程等级考试2022年06月(二级)真题解析

C/C++等级考试(1~8级)全部真题・点这里 第1题:小白鼠再排队 N只小白鼠(1 < N < 100),每只鼠头上戴着一顶有颜色的帽子。现在称出每只白鼠的重量,要求按照白鼠重量从小到大的顺序输出它们头上帽子的颜色。帽子的颜色用 “red”,“blue”等字符串来表示。不同的小白…

十分钟让你搞懂JVM中的GC垃圾回收机制(分代回收)

文章目录 0. 为什么要有垃圾回收?1. 垃圾回收哪个内存区域?2. 如何找到垃圾(死亡对象的判断)2.1 引用计数法2.2 可达性分析法2.3 两种算法的差别 3. 如何清理垃圾(死亡对象的回收)3.1 标记-清楚法3.2 复制法3.3 标记-整理法 4. JVM使用的回收方法4.1 什么是分代回收4.2 哪些对…

【Linux】:信号的产生

信号 一.前台进程和后台进程1.前台进程2。后台进程3.总结 二.自定义信号动作接口三.信号的产生1.键盘组合键2.kill信号进程pid3.系统调用1.kill函数2.raise函数3.abort函数 四.异常五.软件条件六.通过终端按键产生信号 一.前台进程和后台进程 1.前台进程 一个简单的代码演示 …

跟着chatgpt学习|1.spark入门

首先先让chatgpt帮我规划学习路径&#xff0c;使用Markdown格式返回&#xff0c;并转成思维导图的形式 目录 目录 1. 了解spark 1.1 Spark的概念 1.2 Spark的架构 1.3 Spark的基本功能 2.spark中的数据抽象和操作方式 2.1.RDD&#xff08;弹性分布式数据集&#xff09; 2…

JAVA时间常用操作工具类

小刘整理了JAVA中对时间的常用操作&#xff0c;封装了几种方法&#xff0c;简单方便&#xff0c;开箱即用。时间转字符串格式&#xff0c;字符串转时间&#xff0c;以及过去和未来的日期。除此之外&#xff0c;还新增了时间戳之差计算时分秒天的具体方案。 public static void …

【力扣:1707 1803】0-1字典树

思路&#xff1a;树上每个节点存储拥有该节点的数组元素的最小值&#xff0c;left节点表示0&#xff0c;right节点表示1&#xff0c;构建完成后遍历树当子节点没有比mi小的元素时直接输出-1&#xff0c;否则向下构造。 struct tree{int m;tree*leftnullptr,*rightnullptr;tree…