[数据结构]-红黑树

前言

作者小蜗牛向前冲

名言:我可以接受失败,但我不能接受放弃

  如果觉的博主的文章还不错的话,还请点赞,收藏,关注👀支持博主。如果发现有问题的地方欢迎❀大家在评论区指正

目录

一、红黑树的基本知识

 1、红黑树的概念

2、性质 

二、红黑树的模拟实现 

1、节点的定义

2、红黑树的插入 

三、红黑树的测试

1、验证的准备工作

2、测试用例 

3、完整代码实现 

四、AVL树和红黑树的比较 


本期学习目标:什么是红黑树,红黑树是怎么实现的,红黑树的测试,红黑树和AVL树的对比 

一、红黑树的基本知识

 1、红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或 Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路 径会比其他路径长出俩倍(最长路径吧会超过最短路径的2倍),因而是接近平衡的。

2、性质 

  1. 每个结点不是红色就是黑色。
  2.  根节点是黑色的 。
  3.  如果一个节点是红色的,则它的两个孩子结点是黑色的。(没有连续的红节点)
  4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点 。(每条路径下都包含相同的黑节点)
  5.  每个叶子结点都是黑色的(此处的叶子结点指的是空结点)。

 推论:

  1. 最短路径:全部由黑节点组成
  2. 最长路径:一黑一红,红节点数量 == 黑节点数量

这里我们思考一下,红黑树是如何保证:最长路径不超过最短路径的2倍?

  • 由推论2可知,对于最长路经,就是一红一黑,而且红节点数量等于黑节点数量,
  • 在由推论1可知,最短路径节点数量全为黑。
  • 在由性质4可知,每条路径的黑节点数量都相同,这就保证了最长路径不超过2倍的最短路径。

二、红黑树的模拟实现 

1、节点的定义

enum Colour
{
	RED,
	BLACK,
};

template<class K,class V>
struct RBTreeNode
{
	pair<K, V> _kv;
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;
	Colour _col;

	RBTreeNode(const pair<K, V>& kv)
		:_kv(kv)
		,_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_col(RED)
		{}
};

2、红黑树的插入 

根据节点的定义,我们上面定义了一个枚举类型了存放显色的类型,RED和BLACK,但是我们在插入节点的时候是定义红色还是黑色呢?我们在上面定义的是红色为什么呢?

这里分类讨论一下:

定义新插入节点为黑色

就会破坏性质4,导致每天路径的黑色节点数量不同

定义新插入节点为红色

可能会破坏性质3,导致出现连续的红节点,但是这样也仅仅影响的是一条路径,影响有限。

综上所述:所以我们选择插入节点为红色。

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

1. 按照二叉搜索的树规则插入新节点

2.检测新节点插入后,红黑树的性质是否造到破坏

因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:

约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点(p:parent g:grandfather u:uncle)

当p为g的左孩子时,有3种情况需要讨论

情况1:

 

 情况2:

情况3:

 当p为g的右孩子时,也有3种情况需要讨论

这里的讨论和上面相似,处理方法也相似:

情况1:

情况2: 

情况3:

代码实现:

bool insert(const pair<K, V>& kv)
{
	if (_root == nullptr)
	{
		_root = new Node(kv);
		_root->_col = BLACK;
		return true;
	}

	//找到插入位置
		Node* parent = nullptr;
	Node* cur = _root;
	while (cur)
	{
		//到左子树找
		if (cur->_kv.first > kv.first)
		{
			parent = cur;
			cur = cur->_left;
		}
		else if (cur->_kv.first < kv.first)
		{
			parent = cur;
			cur = cur->_right;
		}
		else
		{
			return false;
		}
	}

	//找到了
	cur = new Node(kv);
	cur->_col = RED;//默认颜色为红色
	//链接节点
	if (parent->_kv.first > kv.first)
	{
		parent->_left = cur;
		cur->_parent = parent;
	}
	else
	{
		parent->_right = cur;
		cur->_parent = parent;
	}

	//插入后要调整红黑树
	//如果父亲存在且为红色
	while (parent && parent->_col == RED)
	{
		Node* grandparent = parent->_parent;
		//情况1:cur为红色,p和u都为红色,g为黑色,这里的u是存在的
		//解决方法:p和n都变黑,g变红,在把cur当做g继续调整
		if (parent == grandparent->_left)
		{
			Node* uncle = grandparent->_right;
			if (uncle && uncle->_col == RED)
			{
				parent->_col = uncle->_col = BLACK;
				grandparent->_col = RED;
				cur = grandparent;
				//更新parent
				parent = cur->_parent;
			}
			else//情况2+3  uncle存在且为黑色或者uncle不存在
			{
				if (cur == parent->_left)
				{
					//情况2
					//解决方法:右单旋,将p变黑,g变红
					RotateR(grandparent);
					parent->_col = BLACK;
					grandparent->_col = RED;
				}
				else//情况3:双旋转
				{
					RotateL(parent);
					RotateR(grandparent);
					grandparent->_col = RED;
					cur->_col = BLACK;//双旋转后cur变为了根
				}
				//这里类比根节点为色,不需要在调整了
				break;
			}
		}
		else//grandparent->right == parent
		{
			//这里也是和上面一样分为三种情况
			Node* grandparent = parent->_parent;
			Node* uncle = grandparent->_left;
			if (uncle && uncle->_col == RED)
			{
				parent->_col = uncle->_col = BLACK;
				grandparent->_col = RED;
				cur = grandparent;
				//更新parent
				parent = cur->_parent;
			}
			else
			{
				if (cur == parent->_right)
				{
					RotateL(grandparent);//左单旋转
					parent->_col = BLACK;
					grandparent->_col = RED;
				}
				else
				{
					RotateR(parent);
					RotateL(grandparent);
					grandparent->_col = RED;
					cur->_col = BLACK;//双旋转后cur变为了根
				}
				break;
			}
		}
	}
	//调整完成,把根节点变黑
	_root->_col = BLACK;
	return true;
}
//右单旋
void RotateR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;
	Node* grandparent = parent->_parent;
	//让subLR变为parent的左,
	parent->_left = subLR;
	//这里要判断一下subLR不为空
	if (subLR)
	{
		subLR->_parent = parent;
	}
	//parent变为subL的右
	subL->_right = parent;
	parent->_parent = subL;
	//parent就是为根
	if (grandparent == nullptr)
	{
		_root = subL;
		subL->_parent = grandparent;
	}
	else
	{
		//parnet是上grandparent的左子树
		if (grandparent->_left == parent)
		{
			grandparent->_left = subL;
		}
		else
		{
			grandparent->_right = subL;
		}
		subL->_parent = grandparent;
	}
}

//左单旋
void RotateL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;
	Node* ppNode = parent->_parent;

	parent->_right = subRL;
	if (subRL)
	{
		subRL->_parent = parent;
	}
	
	subR->_left = parent;
	parent->_parent = subR;
	//parnet为根,要更新根
	if (ppNode == nullptr)
	{
		_root = subR;
		subR->_parent = ppNode;
	}
	else
	{
		if (ppNode->_left == parent)
		{
			ppNode->_left = subR;
		}
		else
		{
			ppNode->_right = subR;
		}
		subR->_parent = ppNode;
	}
}

三、红黑树的测试

1、验证的准备工作

  1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)

  2. 检测其是否满足红黑树的性质
    检测方法:
    1、根节点是黑色,否则不是红黑树
    2、当前节点是红色,去检测父亲节点,父亲节点也是红色,则不是红黑树
    3、以最左侧路径的黑色节点为基准,其它路径上的黑色节点与基准不相等,不是红黑树

 检验代码:

void Inorder()
{
	_Inorder(_root);
}

void _Inorder(Node* root)
{
	if (root == nullptr)
		return;

	_Inorder(root->_left);
	cout << root->_kv.first << ":" << root->_kv.second << endl;
	_Inorder(root->_right);
}

bool Check(Node* root, int blackNum, const int ref)
{
	if (root == nullptr)
	{
		//已经递归到最深处进行,本路径的黑节点树和ref数量对比
		if (blackNum != ref)
		{
			cout << "违反规则:本条路径的黑色节点的数量跟最左路径不相等" << endl;
			return false;
		}

		return true;
	}

	if (root->_col == RED && root->_parent->_col == RED)
	{
		cout << "违反规则:出现连续红色节点" << endl;
		return false;
	}

	if (root->_col == BLACK)
	{
		++blackNum;
	}

	return Check(root->_left, blackNum, ref)
		&& Check(root->_right, blackNum, ref);
}

bool IsBalance()
{
	if (_root == nullptr)
	{
		return true;
	}

	if (_root->_col != BLACK)
	{
		return false;
	}
	//求出最左路节点有多少个黑节点
	int ref = 0;
	Node* left = _root;
	while (left)
	{
		if (left->_col == BLACK)
		{
			++ref;
		}

		left = left->_left;
	}

	return Check(_root, 0, ref);
}

2、测试用例 

这里我们借用上面AVL树的测试用例即可

void TestRBTree1()
{
	//int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };
	int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
	//int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
	RBTreeh<int, int> t;
	for (auto e : a)
	{
		/*if (e == 18)
		{
			int x = 0;
		}*/

		t.insert(make_pair(e, e));
		cout << "insert" << e << ":" << t.IsBalance() << endl;
	}

	t.Inorder();

	cout << t.IsBalance() << endl;
}

void TestRBTree2()
{
	srand(time(0));
	const size_t N = 100000;
	RBTreeh<int, int> t;
	for (size_t i = 0; i < N; ++i)
	{
		size_t x = rand();
		t.insert(make_pair(x, x));
		//cout << t.IsBalance() << endl;
	}

	//t.Inorder();
	cout << t.IsBalance() << endl;
}

3、完整代码实现 

#pragma once

enum Colour
{
	RED,
	BLACK,
};

template<class K,class V>
struct RBTreeNode
{
	pair<K, V> _kv;
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;
	Colour _col;

	RBTreeNode(const pair<K, V>& kv)
		:_kv(kv)
		,_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_col(RED)
		{}
};

template<class K,class V>
class RBTreeh
{
	typedef RBTreeNode<K,V> Node;
public:
	bool insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return true;
		}

		//找到插入位置
 		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			//到左子树找
			if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else
			{
				return false;
			}
		}

		//找到了
		cur = new Node(kv);
		cur->_col = RED;//默认颜色为红色
		//链接节点
		if (parent->_kv.first > kv.first)
		{
			parent->_left = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_right = cur;
			cur->_parent = parent;
		}

		//插入后要调整红黑树
		//如果父亲存在且为红色
		while (parent && parent->_col == RED)
		{
			Node* grandparent = parent->_parent;
			//情况1:cur为红色,p和u都为红色,g为黑色,这里的u是存在的
			//解决方法:p和n都变黑,g变红,在把cur当做g继续调整
			if (parent == grandparent->_left)
			{
				Node* uncle = grandparent->_right;
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandparent->_col = RED;
					cur = grandparent;
					//更新parent
					parent = cur->_parent;
				}
				else//情况2+3  uncle存在且为黑色或者uncle不存在
				{
					if (cur == parent->_left)
					{
						//情况2
						//解决方法:右单旋,将p变黑,g变红
						RotateR(grandparent);
						parent->_col = BLACK;
						grandparent->_col = RED;
					}
					else//情况3:双旋转
					{
						RotateL(parent);
						RotateR(grandparent);
						grandparent->_col = RED;
						cur->_col = BLACK;//双旋转后cur变为了根
					}
					//这里类比根节点为色,不需要在调整了
					break;
				}
			}
			else//grandparent->right == parent
			{
				//这里也是和上面一样分为三种情况
				Node* grandparent = parent->_parent;
				Node* uncle = grandparent->_left;
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandparent->_col = RED;
					cur = grandparent;
					//更新parent
					parent = cur->_parent;
				}
				else
				{
					if (cur == parent->_right)
					{
						RotateL(grandparent);//左单旋转
						parent->_col = BLACK;
						grandparent->_col = RED;
					}
					else
					{
						RotateR(parent);
						RotateL(grandparent);
						grandparent->_col = RED;
						cur->_col = BLACK;//双旋转后cur变为了根
					}
					break;
				}
			}
		}
		//调整完成,把根节点变黑
		_root->_col = BLACK;
		return true;
	}
	//右单旋
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		Node* grandparent = parent->_parent;
		//让subLR变为parent的左,
		parent->_left = subLR;
		//这里要判断一下subLR不为空
		if (subLR)
		{
			subLR->_parent = parent;
		}
		//parent变为subL的右
		subL->_right = parent;
		parent->_parent = subL;
		//parent就是为根
		if (grandparent == nullptr)
		{
			_root = subL;
			subL->_parent = grandparent;
		}
		else
		{
			//parnet是上grandparent的左子树
			if (grandparent->_left == parent)
			{
				grandparent->_left = subL;
			}
			else
			{
				grandparent->_right = subL;
			}
			subL->_parent = grandparent;
		}
	}

	//左单旋
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		Node* ppNode = parent->_parent;

		parent->_right = subRL;
		if (subRL)
		{
			subRL->_parent = parent;
		}
		
		subR->_left = parent;
		parent->_parent = subR;
		//parnet为根,要更新根
		if (ppNode == nullptr)
		{
			_root = subR;
			subR->_parent = ppNode;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subR;
			}
			else
			{
				ppNode->_right = subR;
			}
			subR->_parent = ppNode;
		}
	}


	void Inorder()
	{
		_Inorder(_root);
	}

	void _Inorder(Node* root)
	{
		if (root == nullptr)
			return;

		_Inorder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_Inorder(root->_right);
	}

	bool Check(Node* root, int blackNum, const int ref)
	{
		if (root == nullptr)
		{
			//已经递归到最深处进行,本路径的黑节点树和ref数量对比
			if (blackNum != ref)
			{
				cout << "违反规则:本条路径的黑色节点的数量跟最左路径不相等" << endl;
				return false;
			}

			return true;
		}

		if (root->_col == RED && root->_parent->_col == RED)
		{
			cout << "违反规则:出现连续红色节点" << endl;
			return false;
		}

		if (root->_col == BLACK)
		{
			++blackNum;
		}

		return Check(root->_left, blackNum, ref)
			&& Check(root->_right, blackNum, ref);
	}

	bool IsBalance()
	{
		if (_root == nullptr)
		{
			return true;
		}

		if (_root->_col != BLACK)
		{
			return false;
		}
		//求出最左路节点有多少个黑节点
		int ref = 0;
		Node* left = _root;
		while (left)
		{
			if (left->_col == BLACK)
			{
				++ref;
			}

			left = left->_left;
		}

		return Check(_root, 0, ref);
	}
private:
	Node* _root = nullptr;

};

void TestRBTree1()
{
	//int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };
	int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
	//int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
	RBTreeh<int, int> t;
	for (auto e : a)
	{
		/*if (e == 18)
		{
			int x = 0;
		}*/

		t.insert(make_pair(e, e));
		cout << "insert" << e << ":" << t.IsBalance() << endl;
	}

	t.Inorder();

	cout << t.IsBalance() << endl;
}

//void TestRBTree2()
//{
//	srand(time(0));
//	const size_t N = 100000;
//	RBTreeh<int, int> t;
//	for (size_t i = 0; i < N; ++i)
//	{
//		size_t x = rand();
//		t.insert(make_pair(x, x));
//		//cout << t.IsBalance() << endl;
//	}
//
//	//t.Inorder();
//	cout << t.IsBalance() << endl;
//}


四、AVL树和红黑树的比较 

AVL树(Adelson-Velsky and Landis tree)和红黑树都是自平衡的二叉搜索树,它们在维持树的平衡性上采用了不同的策略。以下是它们之间的一些比较:

  1. 平衡性维护策略:

    • AVL树: 通过保持任意节点的左右子树的高度差(平衡因子)不超过1来维护平衡。在每次插入或删除操作后,可能需要旋转来恢复平衡。
    • 红黑树: 通过引入额外的颜色信息和一些规则,确保树的高度保持在较小的范围内。具体来说,红黑树的平衡性维护是通过节点的颜色和一些颜色约束来实现的。
  2. 平衡因子和颜色信息:

    • AVL树: 使用平衡因子(Balance Factor)来表示每个节点左右子树的高度差。通常,平衡因子为 -1、0、1。
    • 红黑树: 使用颜色信息(红色或黑色)来表示树的平衡状态。通过遵循红黑树的性质,确保了树的平衡。
  3. 旋转操作:

    • AVL树: 插入或删除可能需要执行多次旋转操作,包括左旋、右旋、左右旋、右左旋等。
    • 红黑树: 插入或删除通常只需要执行一到两次旋转操作,因为红黑树引入了颜色信息,更灵活地维持平衡。
  4. 性能影响:

    • AVL树: 由于 AVL 树对平衡的要求更为严格,因此在插入和删除等操作时可能会导致更多的旋转,相对来说更耗费性能。
    • 红黑树: 由于其相对宽松的平衡条件,红黑树在插入和删除等操作时通常执行的旋转较少,因此性能可能相对更好。
  5. 应用场景:

    • AVL树: 适用于对搜索性能有较高要求的场景,例如在数据库中需要快速检索数据。
    • 红黑树: 通常在需要高效的插入和删除操作的情况下使用,例如在集合类的实现中。

总体而言,选择 AVL 树还是红黑树取决于应用的特定需求。如果搜索操作远远超过插入和删除,可能更倾向于使用 AVL 树。而在插入和删除操作频繁的情况下,红黑树可能更为适用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/189226.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

可观测性建设实践之 - 日志分析的权衡取舍

指标、日志、链路是服务可观测性的三大支柱&#xff0c;在服务稳定性保障中&#xff0c;通常指标侧重于发现故障和问题&#xff0c;日志和链路分析侧重于定位和分析问题&#xff0c;其中日志实际上是串联这三大维度的一个良好桥梁。 但日志分析往往面临成本和效果之间的权衡问…

css加载会造成阻塞吗??

前言 前几天面试问到了这个问题&#xff0c;当时这个答得不敢确定哈哈&#xff0c;虽然一面还是过了 现在再分析下这个&#xff0c;总结下&#xff0c;等下次遇到就能自信得回答&#xff0c;666 准备工作 为了完成本次测试&#xff0c;先来科普一下&#xff0c;如何利用chr…

【UnLua】在 Lua 中定义 UE 反射类型

【UnLua】在 Lua 中定义 UE 反射类型 UEnum C UENUM(BlueprintType) enum class ETest : uint8 {Walking,Running,Sprinting,ALS_MAX UMETA(DisplayName"ALS MAX") };Test.generated.h #include "UObject/ObjectMacros.h" #include "UObject/Scri…

人工智能-注意力机制之Transformer

Transformer 比较了卷积神经网络&#xff08;CNN&#xff09;、循环神经网络&#xff08;RNN&#xff09;和自注意力&#xff08;self-attention&#xff09;。值得注意的是&#xff0c;自注意力同时具有并行计算和最短的最大路径长度这两个优势。因此&#xff0c;使用自注意力…

红队攻防实战系列一之metasploit

百目无她&#xff0c;百书质华&#xff0c;君当醒悟&#xff0c;建我中华 本文首发于先知社区&#xff0c;原创作者即是本人 前言 在红队攻防中&#xff0c;我们主要在外网进行信息收集&#xff0c;通过cms或者其他漏洞拿到shell&#xff0c;之后通过免杀木马将windows或lin…

学习.NET验证模块FluentValidation的基本用法(续2:其它常见用法)

FluentValidation模块支持调用When和Unless函数设置验证规则的执行条件&#xff0c;其中when函数设置的是满足条件时执行&#xff0c;而Unless函数则是满足条件时不执行&#xff0c;这两个函数的使用示例如及效果如下所示&#xff1a; public AppInfoalidator() {RuleFor(x>…

C#,《小白学程序》第八课:列表(List)其二,编制《高铁列车时刻表》与时间DateTime

1 文本格式 /// <summary> /// 车站信息类 class /// </summary> public class Station { /// <summary> /// 编号 /// </summary> public int Id { get; set; } 0; /// <summary> /// 车站名 /// </summary&g…

C# APS.NET CORE 6.0 WEB API IIS部署

1.创建 APS.NET CORE6.0 WEB API项目 默认选项即可 源代码&#xff1a; 项目文件展开&#xff1a; launchSettings.json {"$schema": "https://json.schemastore.org/launchsettings.json","iisSettings": {"windowsAuthentication"…

STM32_8(DMA)

一、DMA DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取DMA可以提供外设和存储器或者存储器和存储器之间的高速数据传输&#xff0c;无须CPU干预&#xff0c;节省了CPU的资源12个独立可配置的通道&#xff1a; DMA1&#xff08;7个通道&#xff09;&#xff…

RedLock底层源码分析

RedLock底层源码分析 一、Redlock红锁算法 https://redis.io/docs/manual/patterns/distributed-locks/官网说明 1、为什么要学习这个&#xff1f;怎么产生的&#xff1f; ​ 一个很直接的问题&#xff0c;当我使用redis锁的那台机器挂了&#xff0c;出现了单点故障了&#…

hdlbits系列verilog解答(exams/m2014_q4i)-45

文章目录 一、问题描述二、verilog源码三、仿真结果 一、问题描述 实现以下电路&#xff1a; 二、verilog源码 module top_module (output out);assign out 1b0;endmodule三、仿真结果 转载请注明出处&#xff01;

计算机网络常考计算题之循环冗余校验(宝典教学)

文章目录 奇偶效验循环冗余校验例题四步走另一种题型 本文讲述了计算机考研中易出现的循环冗余校验&#xff0c;点赞关注收藏不迷路哦 我是一名双非计算机本科生&#xff0c;希望我的文章可以帮助到你。 奇偶效验 奇偶校验&#xff1a;也可以检测数据在传输过程中是否出现错误…

聚簇索引和非聚簇索引的区别;什么是回表

聚簇索引和非聚簇索引的区别 什么是聚簇索引&#xff1f;&#xff08;重点&#xff09; 聚簇索引就是将数据(一行一行的数据)跟索引结构放到一块&#xff0c;InnoDB存储引擎使用的就是聚簇索引&#xff1b; 注意点&#xff1a; 1、InnoDB使用的是聚簇索引&#xff08;聚簇索…

MySQL日期函数sysdate()与now()的区别,获取当前时间,日期相关函数

select sleep(2) as datetime union all select sysdate() -- sysdate() 返回的时间是当前的系统时间&#xff0c;而 now() 返回的是当前的会话时间。 union all select now() -- 等价于 localtime,localtime(),localtimestamp,localtimestamp(),current_timestamp,curre…

(附源码)SSM环卫人员管理平台 计算机毕设36412

目 录 摘要 1 绪论 1.1背景及意义 1.2国内外研究概况 1.3研究内容 1.4 ssm框架介绍 1.5论文结构与章节安排 2 环卫人员管理平台系统分析 2.1 可行性分析 2.2 系统流程分析 2.2.1数据增加流程 2.2.2数据修改流程 2.2.3数据删除流程 2.3 系统功能分析 2.3.1 功能性…

Kotlin学习——kt中的类,数据类 枚举类 密封类,以及对象

Kotlin 是一门现代但已成熟的编程语言&#xff0c;旨在让开发人员更幸福快乐。 它简洁、安全、可与 Java 及其他语言互操作&#xff0c;并提供了多种方式在多个平台间复用代码&#xff0c;以实现高效编程。 https://play.kotlinlang.org/byExample/01_introduction/02_Functio…

为什么网上大量程序员卡35岁年龄招聘,而从来不报道测试、技术支持、售前售后工程师呢?

其实&#xff0c;网上只报道程序员卡35岁&#xff0c;这个说法并不成立。 而是普遍卡35岁&#xff0c;但并没有明确的一个职业类别。 随便搜一下&#xff0c;一眼望过去&#xff0c;其实已经波及很多行业了。 但如果你把IT从业人员合并报道&#xff0c;确实容易给人一种“程序…

如何在 Vim 中剪切、复制和粘贴

目录 前言 如何在 Vim 编辑器中复制文本 如何在 Vim 编辑器中剪切文本 如何在 Vim 编辑器中粘贴文本 如何通过选择文本来剪切和复制文本 通过选择文本复制 在 Vim 中选择文本来剪切文本 前言 在本篇 Vim 快速技巧中&#xff0c;你将学习到剪切和复制粘贴的相关知识。 剪…

qt5.15.2及6.0以上版本安装

文章目录 下载在线安装器安装打开软件 下载在线安装器 因为从qt5.15开始不支持离线下载安装了&#xff0c;只能通过在线安装的方式进行安装。 下载在线安装下载器&#xff1a; 这个在线安装下载器网上也都是可以找到。 这里是其放到网盘上的下载地址&#xff1a; 链接&#x…