第二十章 解读PASCAL VOC2012与MS COCO数据集(工具)

PASCAL VOC2012数据集

Pascal VOC2012官网地址:http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
官方发表关于介绍数据集的文章 《The PASCALVisual Object Classes Challenge: A Retrospective》:http://host.robots.ox.ac.uk/pascal/VOC/pubs/everingham15.pdf

pascal voc2012


1 简介

PASCAL VOC挑战赛 (The PASCAL Visual Object Classes )是一个世界级的计算机视觉挑战赛,PASCAL全称:Pattern Analysis, Statical Modeling and Computational Learning,是一个由欧盟资助的网络组织。PASCAL VOC挑战赛主要包括以下几类:图像分类(Object Classification)目标检测(Object Detection)目标分割(Object Segmentation)行为识别(Action Classification) 等。

  • 图像分类与目标检测任务
    分类与检测
  • 分割任务,注意,图像分割一般包括语义分割、实例分割和全景分割,实例分割是要把每个单独的目标用一种颜色表示(下图中间的图像),而语义分割只是把同一类别的所有目标用同一颜色表示(下图右侧的图片)。
    分割
  • 行为识别任务
    行为分类
  • 人体布局检测任务
    人体布局检测

2 Pascal VOC数据集目标类别

在Pascal VOC数据集中主要包含20个目标类别,下图展示了所有类别的名称以及所属超类。
vocclasses


3 数据集下载与目录结构

下载地址: http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html#devkit

打开链接后如下图所示,只用下载training/validation data (2GB tar file)文件即可。
download
下载后将文件进行解压,解压后的文件目录结构如下所示:

VOCdevkit
    └── VOC2012
         ├── Annotations               所有的图像标注信息(XML文件)
         ├── ImageSets    
         │   ├── Action                人的行为动作图像信息
         │   ├── Layout                人的各个部位图像信息
         │   │
         │   ├── Main                  目标检测分类图像信息
         │   │     ├── train.txt       训练集(5717)
         │   │     ├── val.txt         验证集(5823)
         │   │     └── trainval.txt    训练集+验证集(11540)
         │   │
         │   └── Segmentation          目标分割图像信息
         │         ├── train.txt       训练集(1464)
         │         ├── val.txt         验证集(1449)
         │         └── trainval.txt    训练集+验证集(2913)
         │ 
         ├── JPEGImages                所有图像文件
         ├── SegmentationClass         语义分割png图(基于类别)
         └── SegmentationObject        实例分割png图(基于目标)

注意,train.txtval.txttrainval.txt文件里记录的是对应标注文件的索引,每一行对应一个索引信息。如下图所示:

txtfile


4 目标检测任务

接下来简单介绍下如何使用该数据集中目标检测的数据。

  • 首先在Main文件中,读取对应的txt文件(注意,在Main文件夹里除了train.txtval.txttrainval.txt文件外,还有针对每个类别的文件,例如bus_train.txtbus_val.txtbus_trainval.txt)。比如使用train.txt中的数据进行训练,那么读取该txt文件,解析每一行。上面说了每一行对应一个标签文件的索引。
   ├── Main                  目标检测分类图像信息
   │     ├── train.txt       训练集(5717)
   │     ├── val.txt         验证集(5823)
   │     └── trainval.txt    训练集+验证集(11540)
  • 接着通过索引在Annotations文件夹下找到对应的标注文件(.xml)。比如索引为2007_000323,那么在Annotations 文件夹中能够找到2007_000323.xml文件。如下图所示,在标注文件中包含了所有需要的信息,比如filename,通过在字段能够在JPEGImages 文件夹中能够找到对应的图片。size记录了对应图像的宽、高以及channel信息。每一个object代表一个目标,其中的name记录了该目标的名称,pose表示目标的姿势(朝向),truncated表示目标是否被截断(目标是否完整),difficult表示该目标的检测难易程度(0代表简单,1表示困难),bndbox记录了该目标的边界框信息。

2007_000323

  • 接着通过在标注文件中的filename字段在JPEGImages 文件夹中找到对应的图片。比如在2007_000323.xml文件中的filename字段为2007_000323.jpg,那么在JPEGImages 文件夹中能够找到2007_000323.jpg文件。

2007_000323.jpg


5 语义分割任务

接下来简单介绍下如何使用该数据集中语义分割的数据。

  • 首先在Segmentarion文件中,读取对应的txt文件。比如使用train.txt中的数据进行训练,那么读取该txt文件,解析每一行,每一行对应一个图像的索引。
  └── Segmentation          目标分割图像信息
        ├── train.txt       训练集(1464)
        ├── val.txt         验证集(1449)
        └── trainval.txt    训练集+验证集(2913)
  • 根据索引在JPEGImages 文件夹中找到对应的图片。还是以2007_000323为例,可以找到2007_000323.jpg文件。

2007_000323.jpg

  • 根据索引在SegmentationClass文件夹中找到相应的标注图像(.png)。还是以2007_000323为例,可以找到2007_000323.png文件。
    20017_000323.png
    注意,在语义分割中对应的标注图像(.png)用PIL的Image.open()函数读取时,默认是P模式,即一个单通道的图像。在背景处的像素值为0,目标边缘处用的像素值为255(训练时一般会忽略像素值为255的区域),目标区域内根据目标的类别索引信息进行填充,例如人对应的目标索引是15,所以目标区域的像素值用15填充。
    segmentation

6 实例分割任务

  • 同样首先在Segmentarion文件中,读取对应的txt文件。比如使用train.txt中的数据进行训练,那么读取该txt文件,解析每一行,每一行对应一个图像的索引。
  └── Segmentation          目标分割图像信息
        ├── train.txt       训练集(1464)
        ├── val.txt         验证集(1449)
        └── trainval.txt    训练集+验证集(2913)
  • 根据索引在JPEGImages 文件夹中找到对应的图片。这里以2007_000032为例,可以找到2007_000032.jpg文件,如下图所示。
    在这里插入图片描述
  • 再根据索引在SegmentationObject文件夹中找到相应的标注图像(.png)。还是以2007_000032为例,可以找到2007_000032.png文件。
    在这里插入图片描述
    注意,在实例分割中对应的标注图像(.png)用PIL的Image.open()函数读取时,默认是P模式,即一个单通道的图像。在背景处的像素值为0,目标边缘处或需要忽略的区域用的像素值为255(训练时一般会忽略像素值为255的区域)。然后在Annotations文件夹中找到对应的xml文件,解析xml文件后会得到每个目标的信息,而对应的标注文件(.png)的每个目标处的像素值是按照xml文件中目标顺序排列的。如下图所示,xml文件中每个目标的序号是与标注文件(.png)中目标像素值是对应的。

在这里插入图片描述


7 类别索引与名称对应关系

下面给出在Pascal VOC数据集中各目标类别名称与类别索引对应关系:

{
	"background": 0,
    "aeroplane": 1,
    "bicycle": 2,
    "bird": 3,
    "boat": 4,
    "bottle": 5,
    "bus": 6,
    "car": 7,
    "cat": 8,
    "chair": 9,
    "cow": 10,
    "diningtable": 11,
    "dog": 12,
    "horse": 13,
    "motorbike": 14,
    "person": 15,
    "pottedplant": 16,
    "sheep": 17,
    "sofa": 18,
    "train": 19,
    "tvmonitor": 20
}

MS COCO数据集


1. MS COCO数据集简介

  • 官网地址
    https://cocodataset.org/
  • 简介
    MS COCO是一个非常大型且常用的数据集,其中包括了目标检测,分割,图像描述等。其主要特性如下:
    • Object segmentation: 目标级分割
    • Recognition in context: 图像情景识别
    • Superpixel stuff segmentation: 超像素分割
    • 330K images (>200K labeled): 超过33万张图像,标注过的图像超过20万张
    • 1.5 million object instances: 150万个对象实例
    • 80 object categories: 80个目标类别
    • 91 stuff categories: 91个材料类别
    • 5 captions per image: 每张图像有5段情景描述
    • 250,000 people with keypoints: 对25万个人进行了关键点标注
      COCO_IMG
  • 注意事项
    • 这里需要注意的一个点是“什么是stuff类别”,在官方的介绍论文中是这么定义的:
      where “stuff” categories include materials and objects with no clear boundaries (sky, street, grass)
      简单的理解就是stuff中包含没有明确边界的材料和对象
    • object的80类与stuff中的91类的区别在哪?在官方的介绍论文中有如下说明:
      Note that we have limited the 2014 release to a subset of 80 categories. We did not collect segmentations for the following 11 categories: hat, shoe, eyeglasses (too many instances), mirror, window, door, street sign (ambiguous and difficult to label), plate, desk (due to confusion with bowl and dining table, respectively) and blender, hair brush (too few instances).
      简单的理解就是object80类是stuff91类的子集。对于我们自己使用,如果仅仅是做目标检测,基本只用object80类即可。
  • 简单与PASCAL VOC数据集对比
    下图是官方介绍论文中统计的对比图,通过对比很明显,不仅类别更多,每个类别标注的目标也更多。
    coco_pascalvoc

如果想进一步了解该数据集,可以去阅读下官方的介绍论文:
Microsoft COCO: Common Objects in Context https://arxiv.org/pdf/1405.0312.pdf

coco


2. MS COCO数据集下载

这里以下载coco2017数据集为例,主要下载三个文件:

  • 2017 Train images [118K/18GB]:训练过程中使用到的所有图像文件
  • 2017 Val images [5K/1GB]:验证过程中使用到的所有图像文件
  • 2017 Train/Val annotations [241MB]:对应训练集和验证集的标注json文件

下载后都解压到coco2017目录下,可以得到如下目录结构:

├── coco2017: 数据集根目录
     ├── train2017: 所有训练图像文件夹(118287张)
     ├── val2017: 所有验证图像文件夹(5000张)
     └── annotations: 对应标注文件夹
     		  ├── instances_train2017.json: 对应目标检测、分割任务的训练集标注文件
     		  ├── instances_val2017.json: 对应目标检测、分割任务的验证集标注文件
     		  ├── captions_train2017.json: 对应图像描述的训练集标注文件
     		  ├── captions_val2017.json: 对应图像描述的验证集标注文件
     		  ├── person_keypoints_train2017.json: 对应人体关键点检测的训练集标注文件
     		  └── person_keypoints_val2017.json: 对应人体关键点检测的验证集标注文件夹
     		  

3. MS COCO标注文件格式

官网有给出一个关于标注文件的格式说明,可以通过以下链接查看:
https://cocodataset.org/#format-data

3.1 使用Python的json库查看

对着官方给的说明,我们可以自己用Python的json库自己读取看下,下面以读取instances_val2017.json为例:

import json

json_path = "/data/coco2017/annotations/instances_val2017.json"
json_labels = json.load(open(json_path, "r"))
print(json_labels["info"])

单步调试可以看到读入进来后是个字典的形式,包括了infolicensesimagesannotations以及categories信息:

coco_label

其中:

  • images是一个列表(元素个数对应图像的张数),列表中每个元素都是一个dict,对应一张图片的相关信息。包括对应图像名称图像宽度高度等信息。
    images_info
  • annotations是一个列表(元素个数对应数据集中所有标注的目标个数,注意不是图像的张数),列表中每个元素都是一个dict对应一个目标的标注信息。包括目标的分割信息polygons多边形)、目标边界框信息[x,y,width,height](左上角x,y坐标,以及宽高)目标面积对应图像id以及类别id等。iscrowd参数只有0或1两种情况,一般0代表单个对象,1代表对象集合。
    annotations_info
  • categories是一个列表(元素个数对应检测目标的类别数)列表中每个元素都是一个dict对应一个类别的目标信息。包括类别id类别名称所属超类

categories_info

3.2 使用官方cocoAPI查看

官方有给出一个读取MS COCO数据集信息的API(当然,该API还有其他重要功能),下面是对应github的连接,里面有关于该API的使用demo:
https://github.com/cocodataset/cocoapi

  • Linux系统安装pycocotools:
pip install pycocotools  
  • Windows系统安装pycocotools:
pip install pycocotools-windows

读取每张图片的bbox信息

下面是使用pycocotools读取图像以及对应bbox信息的简单示例:

import os
from pycocotools.coco import COCO
from PIL import Image, ImageDraw
import matplotlib.pyplot as plt

json_path = "/data/coco2017/annotations/instances_val2017.json"
img_path = "/data/coco2017/val2017"

# load coco data
coco = COCO(annotation_file=json_path)

# get all image index info
ids = list(sorted(coco.imgs.keys()))
print("number of images: {}".format(len(ids)))

# get all coco class labels
coco_classes = dict([(v["id"], v["name"]) for k, v in coco.cats.items()])

# 遍历前三张图像
for img_id in ids[:3]:
    # 获取对应图像id的所有annotations idx信息
    ann_ids = coco.getAnnIds(imgIds=img_id)

    # 根据annotations idx信息获取所有标注信息
    targets = coco.loadAnns(ann_ids)

    # get image file name
    path = coco.loadImgs(img_id)[0]['file_name']

    # read image
    img = Image.open(os.path.join(img_path, path)).convert('RGB')
    draw = ImageDraw.Draw(img)
    # draw box to image
    for target in targets:
        x, y, w, h = target["bbox"]
        x1, y1, x2, y2 = x, y, int(x + w), int(y + h)
        draw.rectangle((x1, y1, x2, y2))
        draw.text((x1, y1), coco_classes[target["category_id"]])

    # show image
    plt.imshow(img)
    plt.show()

通过pycocotools读取的图像以及对应的targets信息,配合matplotlib库绘制标注图像如下:
read coco data


读取每张图像的segmentation信息

下面是使用pycocotools读取图像segmentation信息的简单示例:

import os
import random

import numpy as np
from pycocotools.coco import COCO
from pycocotools import mask as coco_mask
from PIL import Image, ImageDraw
import matplotlib.pyplot as plt

random.seed(0)

json_path = "/data/coco2017/annotations/instances_val2017.json"
img_path = "/data/coco2017/val2017"

# random pallette
pallette = [0, 0, 0] + [random.randint(0, 255) for _ in range(255*3)]

# load coco data
coco = COCO(annotation_file=json_path)

# get all image index info
ids = list(sorted(coco.imgs.keys()))
print("number of images: {}".format(len(ids)))

# get all coco class labels
coco_classes = dict([(v["id"], v["name"]) for k, v in coco.cats.items()])

# 遍历前三张图像
for img_id in ids[:3]:
    # 获取对应图像id的所有annotations idx信息
    ann_ids = coco.getAnnIds(imgIds=img_id)
    # 根据annotations idx信息获取所有标注信息
    targets = coco.loadAnns(ann_ids)

    # get image file name
    path = coco.loadImgs(img_id)[0]['file_name']
    # read image
    img = Image.open(os.path.join(img_path, path)).convert('RGB')
    img_w, img_h = img.size

    masks = []
    cats = []
    for target in targets:
        cats.append(target["category_id"])  # get object class id
        polygons = target["segmentation"]   # get object polygons
        rles = coco_mask.frPyObjects(polygons, img_h, img_w)
        mask = coco_mask.decode(rles)
        if len(mask.shape) < 3:
            mask = mask[..., None]
        mask = mask.any(axis=2)
        masks.append(mask)

    cats = np.array(cats, dtype=np.int32)
    if masks:
        masks = np.stack(masks, axis=0)
    else:
        masks = np.zeros((0, height, width), dtype=np.uint8)

    # merge all instance masks into a single segmentation map
    # with its corresponding categories
    target = (masks * cats[:, None, None]).max(axis=0)
    # discard overlapping instances
    target[masks.sum(0) > 1] = 255
    target = Image.fromarray(target.astype(np.uint8))

    target.putpalette(pallette)
    plt.imshow(target)
    plt.show()

通过pycocotools读取的图像segmentation信息,配合matplotlib库绘制标注图像如下:

在这里插入图片描述


读取人体关键点信息

在MS COCO任务中,对每个人体都标注了17的关键点,这17个关键点的部位分别如下:

["nose","left_eye","right_eye","left_ear","right_ear","left_shoulder","right_shoulder","left_elbow","right_elbow","left_wrist","right_wrist","left_hip","right_hip","left_knee","right_knee","left_ankle","right_ankle"]

在COCO给出的标注文件中,针对每个人体的标注格式如下所示。其中每3个值为一个关键点的相关信息,因为有17个关键点所以总共有51个数值。按照3个一组进行划分,前2个值代表关键点的x,y坐标,第3个值代表该关键点的可见度,它只会取 { 0 , 1 , 2 } {0, 1, 2} {0,1,2}三个值。0表示该点一般是在图像外无法标注,1表示虽然该点不可见但大概能猜测出位置(比如人侧着站时虽然有一只耳朵被挡住了,但大概也能猜出位置),2表示该点可见。如果第3个值为0,那么对应的x,y也都等于0:

[427, 170, 1, 429, 169, 2, 0, 0, 0, 434, 168, 2, 0, 0, 0, 441, 177, 2, 446, 177, 2, 437, 200, 2, 430, 206, 2, 430, 220, 2, 420, 215, 2, 445, 226, 2, 452, 223, 2, 447, 260, 2, 454, 257, 2, 455, 290, 2, 459, 286, 2]

下面是使用pycocotools读取图像keypoints信息的简单示例:

import numpy as np
from pycocotools.coco import COCO

json_path = "/data/coco2017/annotations/person_keypoints_val2017.json"
coco = COCO(json_path)
img_ids = list(sorted(coco.imgs.keys()))

# 遍历前5张图片中的人体关键点信息(注意,并不是每张图片里都有人体信息)
for img_id in img_ids[:5]:
    idx = 0
    img_info = coco.loadImgs(img_id)[0]
    ann_ids = coco.getAnnIds(imgIds=img_id)
    anns = coco.loadAnns(ann_ids)
    for ann in anns:
        xmin, ymin, w, h = ann['bbox']
        # 打印人体bbox信息
        print(f"[image id: {img_id}] person {idx} bbox: [{xmin:.2f}, {ymin:.2f}, {xmin + w:.2f}, {ymin + h:.2f}]")
        keypoints_info = np.array(ann["keypoints"]).reshape([-1, 3])
        visible = keypoints_info[:, 2]
        keypoints = keypoints_info[:, :2]
        # 打印关键点信息以及可见度信息
        print(f"[image id: {img_id}] person {idx} keypoints: {keypoints.tolist()}")
        print(f"[image id: {img_id}] person {idx} keypoints visible: {visible.tolist()}")
        idx += 1

终端输出信息如下,通过以下信息可知,验证集中前5张图片里只有一张图片包含人体关键点信息:

[image id: 139] person 0 bbox: [412.80, 157.61, 465.85, 295.62]
[image id: 139] person 0 keypoints: [[427, 170], [429, 169], [0, 0], [434, 168], [0, 0], [441, 177], [446, 177], [437, 200], [430, 206], [430, 220], [420, 215], [445, 226], [452, 223], [447, 260], [454, 257], [455, 290], [459, 286]]
[image id: 139] person 0 keypoints visible: [1, 2, 0, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
[image id: 139] person 1 bbox: [384.43, 172.21, 399.55, 207.95]
[image id: 139] person 1 keypoints: [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]
[image id: 139] person 1 keypoints visible: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/189067.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

github上不去

想要网上找代码发现github上不去了 发现之前的fastgit也用不了了 搜了很多地方终于找到了 记录保存一下 fastgithub最新下载 选择第二个下载解压就行 使用成功&#xff01;

物联网AI MicroPython学习之语法 实时时钟RTC

学物联网&#xff0c;来万物简单IoT物联网&#xff01;&#xff01; RTC 介绍 模块功能: 实时时钟RTC驱动模块 接口说明 RTC - 构建RTC对象 函数原型&#xff1a;RTC()参数说明&#xff1a; 无 返回值&#xff1a; 构建的RTC对象。 datetime - RTC时钟操作 函数原型&a…

外包干了2个月,技术退步明显了...

先说一下自己的情况&#xff0c;大专生&#xff0c;19年通过校招进入湖南某软件公司&#xff0c;干了接近4年的功能测试&#xff0c;今年8月份&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试…

KVM虚拟机的NAT网络模式原理及过程展示

NAT的方式及原理 NAT方式是KVM安装后的默认方式。 它支持主机与虚拟机的互访&#xff0c;同时也支持虚拟机访问互联网&#xff0c;但不支持外界访问虚拟机。 default是宿主机安装虚拟机支持模块的时候自动安装的。 其中 virbr0是由宿主机虚拟机支持模块安装时产生的虚拟网络接…

Android设计模式--外观模式

弈之为术&#xff0c;在人自悟 一&#xff0c;定义 外观模式要求一个子系统的外部与其内部的通信必须通过一个统一的对象进行。提供一个高层次的接口&#xff0c;使得子系统更易于使用。 外观模式在开发中的使用频率是非常高的&#xff0c;尤其是在第三方的SDK里面&#xff0…

【网络】DNS协议、ICMP协议、NAT技术

DNS协议、ICMP协议、NAT技术 一、DNS协议1、产生背景2、域名简介3、域名解析的工作流程4、使用dig工具分析DNS过程 二、ICMP协议1、ICMP介绍2、ICMP协议格式3、ping命令4、traceroute命令 三、NAT技术1、NAT技术背景2、NAT IP转换过程3、地址转换表4、NAPT技术5、重新理解路由器…

阿里元境亮相第八届世界物联网大会,分享元计算对数字文旅的创新赋能

2023&#xff08;第八届&#xff09;世界物联网大会于11月20日在中国北京隆重开幕。联合国秘书长安东尼奥古特雷斯在开幕式发表书面致辞时特别提到&#xff1a;“在一个相互连接的世界&#xff0c;你们的主题‘新物联、新经济、新时代’是数字技术影响力的见证”。 11月21日上午…

K8s 中 Pod OOMKilled 原因

目录 Exit Code 137 解决方案 JVM 感知 cgroup 限制 使用 JDK9 的容器感知机制尝试 问题分析 容器内部感知 CGroup 资源限制 在 Java10 中&#xff0c;改进了容器集成 JVM 参数 MaxDirectMemorySize -XX:MaxDirectMemorySize 的默认值是什么&#xff1f; 其他获取 ma…

从0到0.01入门 Webpack| 007.精选 Webpack面试题

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

计算机毕业设计 基于SpringBoot的物业管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

C#,《小白学程序》第十一课:双向链表(Linked-List)其二,链表的插入与删除的方法(函数)与代码

1 文本格式 /// <summary> /// 改进的车站信息类 class /// 增加了 链表 需要的两个属性 Last Next /// </summary> public class StationAdvanced { /// <summary> /// 编号 /// </summary> public int Id { get; set; } 0; ///…

STM32 启动文件分析

STM32 启动文件分析 基于STM32F103VET6芯片的 startup_stm32f10x_hd.s 启动文件分析 设置栈&#xff0c;将栈的大小Stack_Size设置为0x00004900&#xff08;18688/102418KB&#xff09;&#xff0c;即局部变量不能大于18KB。&#xff08;EQU等值指令&#xff0c;将0x0000490…

C语言进阶之路-运算符小怪篇

目录 一、学习目标 二、运算符详谈 算术运算符 关系运算符 逻辑运算符 位运算符 特殊运算符 条件运算符 sizeof 运算符 打怪实战 三、控制流 二路分支 多路分支 const while与 do…while循环 语法&#xff1a; for循环 break与continue goto语句&#xff08…

Windows系统管理之备份与恢复

本章目录&#xff1a; 一. 本章须知&#xff1a; 前置条件 需要创建一个新的磁盘 前置条件2 给新添加的磁盘分盘 二. 了解开启并学会使用Windows sever backup 如何使用备份与恢复“备份计划”“一次性备份”“恢复” 最后是用命令行“一次性备份命令 ”完成一次备份 话不多说 …

常见位运算的详讲!

今日为大家详细讲解一番关于常见位运算的操作&#xff0c;本文主要介绍一些位运算的操作符&#xff0c;然后再通过简单->中等->困难的例题&#xff0c;让大家彻底搞懂关于位运算的知识&#xff01; 位运算的介绍&#xff01; 1.基础位运算 ">>"右移操作…

纵观手机市场,手机即鏖战全面屏

9月13日&#xff0c;在相继发布Apple TV、Apple Watch 和iPhone 8/8 Plus之后&#xff0c;当大家都以为苹果新品发布会临近结束之时&#xff0c;苹果前CEO史蒂夫乔布斯的这句经典名言再现屏幕&#xff0c;iPhone X终于揭开了神秘面纱。 “One more thing”。 9月13日&#xff…

第一百七十九回 自定义SlideImageSwitch

文章目录 1. 概念介绍2. 思路与方法2.1 实现思路 3. 代码与效果3.1 示例代码3.2 运行效果 4. 内容总结 我们在上一章回中介绍了"SlideSwitch组件"相关的内容&#xff0c;本章回中将介绍自定义SlideImageSwitch.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概…

4、LED闪烁

LED亮灭 使用STC-ISP软件的延时计算器自动生成延迟子函数 #include <REGX52.H> #include <INTRINS.H>//延迟函数 void Delay500ms() //12.000MHz {unsigned char i, j, k;//_nop_()需要导入<INTRINS.H>包_nop_();i 4;j 205;k 187;do{do{while (--k);}…

【数据库篇】关系模式的表示——(2)规范化

范式&#xff1a;范式是符合某一种级别的关系模式的集合 规范化&#xff1a;是指一个低一级的范式的关系模式&#xff0c;通过模式的分解转换为若干个高一级范式的关系模式的集合。 1NF 每个分量必须是不可分开的数据项&#xff0c;满足这个条件的关系模式就是1NF。 2NF 若…

c语言判断三角形

以下是一个用C语言编写的程序&#xff0c;用于判断输入的三个数能否构成三角形。 #include <stdio.h>int main() { int a, b, c; printf("请输入三角形的三条边长&#xff1a;\n"); scanf("%d%d%d", &a, &b, &c); if (a b…