Kafka系列 - Kafka一篇入门

Kafka是一个分布式流式处理平台。很多分布式处理系统,例如Spark,Flink等都支持与Kafka集成。

Kafka使用场景

  • 消息系统:Kafka实现了消息顺序性保证回溯消费
  • 存储系统:Kafka把消息持久化到磁盘,相比于其他基于内存的系统而言,有效的降低了数据丢失的风险。Kafka的消息持久化和多副本机制使得我们可以把Kafka作为长期的数据存储系统来使用,只需要把对应的数据保留策略设置为永久或者启动主题的日志压缩功能即可。
  • 流式处理平台:Kafka提供了一个流失处理库,比如窗口,连接,变换,聚合等各类操作。

架构设计

  • 若干个Producer
  • 若干个Broker
  • 若干个Consumer
  • 一个zookeeper集群(现在已经移除了),变成了kRaft

在这里插入图片描述

其中 ZooKeeper 是 Kafka 用来负责集群元数据的管理、控制器的选举等操作的。Producer 将消息发送到 Broker,Broker 负责将收到的消息存储到磁盘中,而 Consumer 负责从 Broker 订阅并消费消息。

这里详细介绍一下Broker这个概念:服务代理节点。对于kafka而言,Broker可以简单地看作一个独立的Kafka服务节点或者Kafka服务实例。大多数情况下也可以将Broker看作一台Kafka服务器,前提是这台服务器上只部署了一个Kafka实例。一个或者多个Broker组成了一个Kafka集群。一般而言你我们更习惯使用首字母小写的broker来表示服务代理节点。

在Kafka中还有两个特别重要的概念 - 主题(Topic)与分区(Partition)。Kafka中的消息以主题为单位进行归类,生产者负责将消息发送到特定的主题(发送到Kafka集群中的每一条消息都要指定一个主题),而消费者负责订阅主题并且进行消费。

主题是一个逻辑上的概念,它还可以细分成多个分区,一个分区只属于单个主题,很多时候也会把分区称之为主题分区(Topic-Partion)。同一个主题下的不同分区包含的消息是不同的,分区在存储层可以看作一个可追加的日志(Log)文件,消息在被追加到分区日志文件的时候都会分配一个特定的偏移量(offset)。

offset是消息在分区中的唯一标识,Kafka通过它来保证消息在分区内的顺序性,不过offset并不跨越分区,也就是说Kafka保证的是分区有序而不是主题有序。

在这里插入图片描述

如图所示,主题中4个分区,消息被顺序追加到每个分区日志文件的尾部。Kafka中的分区可以分布在不同的服务器(broker)上,也就是一个主题可以横跨多个broker,以此来提供比单个broker更强大的功能。

每一条消息被发送到broker之前,会根据分区规则选择存储到哪个具体到分区。如果分区规则设定得合理,所有的消息都可以均匀的分配到不同的分区中。如果一个主题只对应一个文件,那么这个文件所在的机器IO会成为这个主题的性能瓶颈,而分区解决了这个问题。在创建主题的时候可以通过指定的参数来设置分区的个数,当然也可以在主题创建完成之后会修改分区的数量,通过增加分区的数量可以实现水平拓展

Kafka为分区引入了多副本的机制,通过增加副本数量可以提升容灾能力。

同一分区的不同副本中保存的是相同的消息(在同一时刻,副本之间并非完全一样),副本之间是一主多从的关系,其中leader副本负责处理读写请求,follower副本只负责与leader副本的消息同步。副本处在不同的broker中,当leader副本出现故障的时候,从follower副本中重新选举鑫的leade副本对外提供服务。Kafka通过多副本机制实现了故障的自动转移,当Kafka集群个中某个broker失效时仍然可以保证服务可用。

在这里插入图片描述

如上图所示,Kafka 集群中有4个 broker,某个主题中有3个分区,且副本因子(即副本个数)也为3,如此每个分区便有1个 leader 副本和2个 follower 副本。生产者和消费者只与 leader 副本进行交互,而 follower 副本只负责消息的同步,很多时候 follower 副本中的消息相对 leader 副本而言会有一定的滞后。

Kafka 消费端也具备一定的容灾能力。Consumer 使用拉(Pull)模式从服务端拉取消息,并且保存消费的具体位置,当消费者宕机后恢复上线时可以根据之前保存的消费位置重新拉取需要的消息进行消费,这样就不会造成消息丢失。

分区中的所有副本统称为AR(Assigned Replicas)。所有与leader副本保持一定程度同步的副本(包括leader副本在内)组成ISR(In-Sync Replicas),ISR时AR集合中的一个子集。消息会先发送到 leader 副本,然后 follower 副本才能从 leader 副本中拉取消息进行同步,同步期间内 follower 副本相对于 leader 副本而言会有一定程度的滞后。

前面所说的“一定程度的同步”是指可忍受的滞后范围,这个范围可以通过参数进行配置。与 leader 副本同步滞后过多的副本(不包括 leader 副本)组成 OSR(Out-of-Sync Replicas),由此可见,AR=ISR+OSR。在正常情况下,所有的 follower 副本都应该与 leader 副本保持一定程度的同步,即 AR=ISR,OSR 集合为空。

leader 副本负责维护和跟踪 ISR 集合中所有 follower 副本的滞后状态,当 follower 副本落后太多或失效时,leader 副本会把它从 ISR 集合中剔除。如果 OSR 集合中有 follower 副本“追上”了 leader 副本,那么 leader 副本会把它从 OSR 集合转移至 ISR 集合。默认情况下,当 leader 副本发生故障时,只有在 ISR 集合中的副本才有资格被选举为新的 leader,而在 OSR 集合中的副本则没有任何机会(不过这个原则也可以通过修改相应的参数配置来改变)。

ISR与HW和LEO也有密切关系。HW是High Watermark的缩写,俗称高水位,它标识了一个特定的消息偏移量(offset),消费者只能拉取到这个offset之前到消息。

在这里插入图片描述

如上图所示,它代表一个日志文件,这个日志文件中有9条消息,第一条消息的 offset(LogStartOffset)为0,最后一条消息的 offset 为8,offset 为9的消息用虚线框表示,代表下一条待写入的消息。日志文件的 HW 为6,表示消费者只能拉取到 offset 在0至5之间的消息,而 offset 为6的消息对消费者而言是不可见的。

LEO是Log End Offset的缩写,它标识当前日志文件中的下一条待写入消息的offset,上图中offset为9的位置即为当前日志文件的LEO,LEO的大小相当于当前日志分区中最后一条消息的offset值加1。分区 ISR 集合中的每个副本都会维护自身的 LEO,而 ISR 集合中最小的 LEO 即为分区的 HW,对消费者而言只能消费 HW 之前的消息。

注意要点:很多资料中误将上图中的 offset 为5的位置看作 HW,而把 offset 为8的位置看作 LEO,这显然是不对的。

在这里插入图片描述

假设某个分区的 ISR 集合中有3个副本,即一个 leader 副本和2个 follower 副本,此时分区的 LEO 和 HW 都为3。消息3和消息4从生产者发出之后会被先存入 leader 副本。

在这里插入图片描述

在消息写入 leader 副本之后,follower 副本会发送拉取请求来拉取消息3和消息4以进行消息同步。

在这里插入图片描述

在同步的过程中,不同的follower副本的同步效率也不尽相同。如上图所示,在某一个时刻follower1完全跟上了leader副本而follower2只同步了消息3,如此leader副本的LEO为5,follower1 的 LEO 为5,follower2 的 LEO 为4,那么当前分区的 HW 取最小值4,此时消费者可以消费到 offset 为0至3之间的消息。

写入消息(情形4)如下图所示,所有的副本都成功写入了消息3和消息4,整个分区的 HW 和 LEO 都变为5,因此消费者可以消费到 offset 为4的消息了。

在这里插入图片描述

由此可见,Kafka 的复制机制既不是完全的同步复制,也不是单纯的异步复制。事实上,同步复制要求所有能工作的 follower 副本都复制完,这条消息才会被确认为已成功提交,这种复制方式极大地影响了性能。而在异步复制方式下,follower 副本异步地从 leader 副本中复制数据,数据只要被 leader 副本写入就被认为已经成功提交。在这种情况下,如果 follower 副本都还没有复制完而落后于 leader 副本,突然 leader 副本宕机,则会造成数据丢失。Kafka 使用的这种 ISR 的方式则有效地权衡了数据可靠性和性能之间的关系。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/187523.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

x86 汇编语言介绍001

1,搭建编程环境 1.1 NASM 基本信息 示例使用的汇编器为 nasm 主页: https://www.nasm.us/https://www.nasm.us/ 下载最新的稳定版源代码 wget https://www.nasm.us/pub/nasm/releasebuilds/2.16.01/nasm-2.16.01.tar.gz 1.2解压并编译安装 tar zx…

89. 打家劫舍【动态规划】

题目 题解 class Solution:def rob(self, nums: List[int]) -> int:N len(nums)# 定义状态: dp[i]表示从第i间房子开始抢劫,最多能抢到的金额dp [0 for i in range(N)]for i in range(N-1, -1, -1):if i N-1:dp[i] nums[i]elif i N-2:dp[i] max(nums[i], …

案例-某验四代滑块反爬逆向研究一

系列文章目录 第一部分 案例-某验四代滑块反爬逆向研究一 文章目录 系列文章目录前言一、分析流程二、定位 w 值生成位置三、device_id 值的定位生成四、pow_msg 值 和 pow_sign 值的生成总结 前言 本文章中所有内容仅供学习交流使用,不用于其他任何目的&#xff…

训练日志——wandb

目录 安装与登录基础使用与可视化常用函数wandb.init()wandb.config()wandb.log()wandb.finish()wandb.watch() 参考 安装与登录 安装 pip install wandb注册并登录 https://wandb.ai/site客户端登陆 在终端中输入wandb login 然后出现You can find you API key的一串网站&am…

Mysql数据库 20.DCL数据控制语言

因这类SQL语言开发人员操作较少,主要是数据库管理员(DBA)使用,所以前文没有提及,这篇文章进行补充说明 DCL数据控制语言 用来管理数据库用户,控制数据库的访问权限 1.管理用户 1.1 查询用户 select * f…

软件测试 | MySQL 非空约束详解

📢专注于分享软件测试干货内容,欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!📢交流讨论:欢迎加入我们一起学习!📢资源分享:耗时200小时精选的「软件测试」资…

【c++哈夫曼树代码实现】

哈夫曼树是不定长编码方式,由于是将权值大的元素放在离根结点近的地方 ,权值小的放在离根远的地方,哈夫曼树效率很高,并且一个编码不会以另一个编码作为前缀,避免了编码的歧义性,本文将带大家探索如何创建和…

【Apache Doris】一键实现万表MySQL整库同步 | 快速体验

【Apache Doris】一键实现万表MySQL整库同步 | 快速体验) 一、 环境信息1.1 硬件信息1.2 软件信息 二、 流程介绍三、 前提概要3.1 安装部署3.2 JAR包准备3.2.1 数据源3.2.2 目标源 3.3 脚本模版 四、快速体验五、常见问题5.1 Mysql通信异常5.2 MySQL无Key同步异常5…

excel一个单元格换行方法

要是在同一个单元格内输入文字输入不下的话,我们是可以进行同一个单元格换行设置的,而且换行的方法也是有很多种,下面我们就一起来看一下有哪些方法吧。 excel一个单元格换行方法: 方法一: 1、我们可以直接按下alte…

2-10岁女童穿搭 I 看的见的时尚感

分享女儿的时尚穿搭—连帽加绒卫衣 简单易搭怎么穿都好看的卫衣 红色吸睛又显肤色,不挑人穿 面料亲肤柔软,保暖性也很棒 单穿内搭都能轻松打造时尚造型!!

广州华锐互动:AR可视化展示昆虫让教学过程更直观生动

随着科技的不断发展,AR(增强现实)技术已经逐渐走进我们的生活。通过AR技术,我们可以将虚拟的信息叠加到现实世界中,让现实世界变得更加丰富多彩。在这篇文章中,我们将以昆虫为主题,探讨AR增强现…

破案现场:Docker容器资源限制导致的oom问题

破案现场:Docker容器资源限制导致的oom问题 01 事故现场02 问题定位03 对症下药04 后记 原文来自于微信公众号“运维之美” https://mp.weixin.qq.com/s?__bizMzA5NDY1MTM3MA&mid2247484902&idx1&sn8394aefd884ee09ea546fcd400dd233c&chksm904a136…

想当老师应该去学什么专业

专业选择是决定未来职业发展的重要步骤,如果你也想成为一名老师,那么这五个专业可能会适合你! 教育学专业 教育学专业是培养教育理论和方法的学科,这些理论知识将帮助你理解教学过程、学生发展、课程设计和评估。该专业将让你全面…

人工智能教程(二):人工智能的历史以及再探矩阵

目录 前言 更多矩阵的知识 Pandas 矩阵的秩 前言 在上一章中,我们讨论了人工智能、机器学习、深度学习、数据科学等领域的关联和区别。我们还就整个系列将使用的编程语言、工具等做出了一些艰难的选择。最后,我们还介绍了一点矩阵的知识。在本文中&am…

机器学习第14天:KNN近邻算法

☁️主页 Nowl 🔥专栏《机器学习实战》 《机器学习》 📑君子坐而论道,少年起而行之 文章目录 介绍 实例 回归任务 缺点 实例 分类任务 如何选择最佳参数 结语 介绍 KNN算法的核心思想是:当我们要判断一个数据为哪一类时…

CMD - ping

文章目录 前言参数 前言 ping 命令主要测试到达指定 IP 或主机的连通性. 参数 -t: ping 指定的计算机直到中断 -a: 将地址解析为主机名 -n count: 要发送的回显请求数

教师编制缩减是为什么

老师们有没有注意到一个趋势?那就是教师编制正在逐步缩减。不知道你们发现没有,我最近在研究教育领域的新闻,发现这两年教师编制缩减的消息越来越多。这是为什么呢?今天就来跟大家聊一聊。 原因一:资金压力 第一个原因…

【华为OD题库-038】支持优先级的对列-java

题目 实现一个支持优先级的队列,高优先级先出队列,同优先级时先进先出。 如果两个输入数据和优先级都相同,则后一个数据不入队列被丢弃。 队列存储的数据内容是一个 整数。 输入描述 一组待存入队列的数据(包含内容和优先级)。 输出描述 队列…

ubuntu 使用webrtc_ros 编译linux webrtc库

ubuntu 使用webrtc_ros 编译linux webrtc库 webrtc_ros 使用WebRTC流式传输ROS图像主题 该节点提供了一个WebRTC对等方,可以将其配置为流ROS图像主题并接收发布到ROS图像主题的流。 该节点托管一个提供简单测试页面的Web服务器,并提供可用于创建和配置W…

基于springboot实现学生成绩管理系统项目【项目源码+论文说明】

基于springboot实现学生成绩管理系统演示 摘要 随着信息技术和网络技术的飞速发展,人类已进入全新信息化时代,传统管理技术已无法高效,便捷地管理信息。为了迎合时代需求,优化管理效率,各种各样的管理系统应运而生&am…