【深度学习】因果推断与机器学习的高级实践 | 数学建模

文章目录

  • 因果推断
  • 因果推断的前世今生
    • (1)潜在结果框架(Potential Outcome Framework)
    • (2)结构因果模型(Structual Causal Model,SCM)

身处人工智能爆发式增长时代的机器学习从业者无疑是幸运的,人工智能如何更好地融入人类生活的方方面面是这个时代要解决的重要问题。滴滴国际化资深算法工程师王聪颖老师发现,很多新人在入行伊始,往往把高大上的模型理论背得滚瓜烂熟,而在真正应用时却摸不清门路、抓不住重点,导致好钢没用到刀刃上,无法取得实际的业务收益。如果能有一本指导新人从入门到精通、从理论到实践的技术书籍,那该多好,这样不仅省去了企业培养新人的成本,也留给了新人自我学习成长的空间。

本着这个初心,王老师花了将近一年的业余时间来复盘总结了自己以及身边同事从小白成长为独当一面的合格算法工程师的成长历程和项目经验,最终以理论结合实践的方式写入《机器学习高级实践:计算广告、供需预测、智能营销、动态定价》这本书中,希望能通过他的经验,真正地帮助到对机器学习算法感兴趣的读者。请添加图片描述

《机器学习高级实践:计算广告、供需预测、智能营销、动态定价》

作者:王聪颖  谢志辉

因果推断

在这里插入图片描述
因果推断是近年来机器学习领域新兴的一个分支,它主要解决“先有鸡还是先有蛋”的问题。因此,因果推断和关联关系最主要的区别是:因果推断是试图通过变量X的变化推断其对结果Y带来的影响有多少,而关联关系则侧重于表达变量之间的趋势变化,如两个变量图片之间有相关性关系,如果图片随着图片的递增而递增,则说明图片和图片正相关,如果图片随着图片递增而下降,则说明两者负相关。因此因果性(Causality)和相关性(Correlation)有着本质的不同,为了帮助读者更好地理解,这里举个例子:
某研究表明,吃早饭的人比不吃早饭的人体重更轻,因此“专家”得出结论——吃早饭可以减肥。但事实上,吃早饭和体重轻很有可能只是相关性关系,而并非因果关系。吃早饭的人可能是因为三餐规律、经常锻炼、睡眠充足等等一系列健康的生活方式,最终导致了他们的体重更轻。图1所示为因果推断中的混杂因子,描述了健康的生活方式、吃早饭、体重轻三者的关系。
请添加图片描述
很显然,拥有健康的生活方式的人会吃早餐,健康生活方式同时也会导致体重轻,可见健康的生活方式是吃早餐和体重轻的共同原因。正是因为有这样的共同原因存在,导致我们不能轻易地得出吃早餐和体重轻之间存在因果关系,所以我们认为“专家”的结论是草率的。吃早餐和减肥之间只存在相关性,不存在因果性,并把这种阻断因果关系推断的共同原因称之为混杂因子。那么如图1右所示,消除混杂因子,寻找两个变量之间的因果关系,并量化出来某种自变量X的改变,影响了因变量Y的改变程度是因果推断主要探讨的内容。

因果推断的前世今生

在这里插入图片描述

(1)潜在结果框架(Potential Outcome Framework)

在介绍潜在结果框架之前,先列出两个需要声明的假设来描述个体因果效应,另外需要注意的是为了更快的帮助大家入门,本文只描述二元处理,即个体只有接受处理和不接受处理两种情况,并对应两种处理方式的结果。
请添加图片描述
但是在现实世界中,个体图片在同一时刻要么接受处理,要么不接受处理,不可能同时既接受处理又不接受处理,因此个体因果作用是不可识别的,个体的观测数据结果图片

在已知个体因果作用无法识别的情况下,如何进行因果推断呢?或许把因果作用的识别从个体转移到了总体身上是个行之有效的解决方案,于是便有了平均因果作用(ATE,
Average Treatment
Effect)的概念。平均因果作用不再比较个体的因果作用,而是比较两组群体在不同的处理下的潜在结果,这两组群体除了接受的处理不同之外,必须具有同质的属性,这样计算出的平均因果作用才能无偏,随机对照实验(Random
controlled Trial,RCT)是保证两组群里无偏性的基本实验方法。把全量数据随机分为实验组(Treatment
Group)和对照组(Control
Group),其中实验组的T=1,对照组的T=0,那么平均因果作用的公式如下:请添加图片描述

其中Y(1)和Y(0)分别是接受处理情况下实验组的结果和不接受处理情况下对照组的结果。至此,潜在结果框架下做因果推断的基本理论知识已经讲解完毕,归纳起来主要有以下两点。
1)随机对照试验保证组别的同质性。

2)从不可评估的个体因果作用转移向评估总体的平均因果效应。

(2)结构因果模型(Structual Causal Model,SCM)

有向无环图是由节点和有向边组成的,有向边的上游是父节点,有向边指向的方向是子节点。在DAG中的某个节点的父节点与其非子节点都独立,根据全概率公式和条件独立性,一个有向无环图中的所有节点的联合概率分布可以表达为:
在这里插入图片描述
其中图片是所有指向图片的父节点,为了更好地帮助读者理解有向无环图中的联合分布表达,这里给出一个具体的DAG实例,如图2所示。请添加图片描述
根据有向无环图的条件独立性和联合概率分布的公式,图2的联合分布可以表达为:请添加图片描述
每一个有向无环图产出了唯一的联合分布,但是一个联合分布不一定只对应着一个有向无环图,比如图片的联合概率分布有可能是图片,也可能是图结构图片,而两种图结构的因果关系完全相反,这也正是贝叶斯网络不适合做因果模型的原因。为了把DAG改造成可以表达因果关系的因果图,需要引入do算子。这里的do算子就表达的是一种干预,图片表示将指向节点图片的有向边全部切除掉,并且节点图片赋值为常数,在do算子干预后,DAG的联合概率分布有了变化,表达为如下的形式:请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

在图3的链式、叉式、反叉式三种路径结构中,反叉式结构中的A、C天然相互独立,B又被称为对撞子,链式或者叉式结构,以B为条件可以阻断A和C之间的关联关系,从而实现A、C相互独立。d-分离就是为了达到变量独立的目的,而对不同的路径结构采取的阻断的操作,具体的d-分离法则归纳起来如下。
1)当某条路径上有两个箭头同时指向某个变量时,那这个变量称之为对撞子,并且这条路径被对撞子阻断。
2)如果某条路径含有非对撞子,那么当以非对撞子为条件时,这条路径可以被阻断。
3)当某条路径以对撞子为条件时,这条路径不仅不会被阻断,反而会被打开。

这里需要注意的是,以某个变量为条件指的是指定某个变量的值,比如以年龄这个变量为条件,就是指定年龄为0或者1。
在了解d-分离法则是可以通过以某个变量为条件进行阻断,从而实现变量间的独立之后,便可以结合后门准则消除混杂因子对未知结构的因果图进行因果推断了。在弄清楚后门准则之前,需要了解后门路径、前门路径的概念。从变量X到变量Y的后门路径就是连接X到Y,但是箭头不从X出发的路径,与之相应的前门路径是连接X到Y且箭头从X出发的路径,后门准则的定义是可以通过d-分离阻断X和Y之间所有的后门路径,那么我们认为可以识别从X到Y之间的因果关系,并把阻断后门路径的因子称之为混杂因子。至此,知道了后门准则的方法无须观测到所有的变量,只需要观测到以哪个变量为条件可以消除后门路径,从而使得X到Y之间的因果关系可识别。
在这里插入图片描述
请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/187481.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

uniapp实现多时间段设置

功能说明&#xff1a; 1 点击新增时间&#xff0c;出现一个默认时间段模板&#xff0c;不能提交 2 点击“新增时间文本”&#xff0c;弹出弹窗&#xff0c;选择时间&#xff0c;不允许开始时间和结束时间同时为00:00&#xff0c; <view class"item_cont"> …

python排序算法_归并排序

什么是归并排序&#xff1a; 归并排序是一种基于分治法的排序算法。它的基本思想是将待排序的序列分成若干个子序列&#xff0c;分别进行排序&#xff0c;然后再将已排序的子序列合并成一个有序的序列。 基本思想&#xff1a; 归并排序是用分治思想&#xff0c;分治模式在每一…

ubuntu22.04 安装 jupyterlab

JupyterLab Install JupyterLab with pip: pip install jupyterlabNote: If you install JupyterLab with conda or mamba, we recommend using the conda-forge channel. Once installed, launch JupyterLab with: jupyter lab

基于人工兔算法优化概率神经网络PNN的分类预测 - 附代码

基于人工兔算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于人工兔算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于人工兔优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神经网络…

CDN的认识与绕过

CDN的认识与绕过 什么是CDN CDN的全称是Content Delivery Network&#xff0c;即内容分发网络。它依靠部署在各地的边缘服务器&#xff0c;通过中心平台的负载均衡、内容分发、调度等功能模块&#xff0c;使用户就近获取所需内容&#xff0c;降低网络拥塞&#xff0c;提高用户…

万字解析设计模式之策略模式、命令模式

一、策略模式 1.1概述 先看下面的图片&#xff0c;我们去旅游选择出行模式有很多种&#xff0c;可以骑自行车、可以坐汽车、可以坐火车、可以坐飞机。 策略模式&#xff08;Strategy Pattern&#xff09;是一个行为型设计模式&#xff0c;它定义了一组算法家族&#xff0c;分…

今年的校招薪资真的让人咋舌!

秋招接近尾声&#xff0c;各大公司基本也陆续开奖了。这里整理了部分公司的薪资情况&#xff0c;数据来源于 OfferShow 和牛客网。 ps&#xff1a;爆料薪资的几乎都是 211 和 985 的&#xff0c;并不是刻意只选取学校好的。另外&#xff0c;无法保证数据的严格准确性。 淘天 …

【实战】K8S Helm部署Redis Cluster Redisinsight

文章目录 前言部署Redis Cluster安装Redis Insight写在最后 前言 在Web服务的开发过程中&#xff0c;Redis一直以来都有着举足轻重的作用。基本上所有的后端服务都会用这个中间件实现具体的业务场景&#xff0c;比如常作为系统缓存、分布式锁&#xff0c;也可以实现排名、定位…

向量机SVM原理理解和实战

目录 概念场景导入 点到超平面的距离公式 最大间隔的优化模型 硬间隔、软间隔和非线性 SVM 用 SVM 如何解决多分类问题 1. 一对多法 2. 一对一法 SVM主要原理和特点 原理 优点 缺点 支持向量机模型分类 SVM实战如何进行乳腺癌检测 数据集 字段含义 代码实现 参…

apple macbook M系列芯片安装 openJDK17

文章目录 1. 查找openjdk版本2. 安装openjdk3. 多jdk之间的切换 在这里我们使用 brew 命令查找并安装。 1. 查找openjdk版本 执行&#xff1a;brew search openjdk&#xff0c;注意&#xff1a;执行命令后&#xff0c;如果得到的结果中没有红框内容&#xff0c;则需要更新一下…

docker部署phpIPAM

0说明 IPAM&#xff1a;IP地址管理系统 IP地址管理(IPAM)是指的一种方法IP扫描&#xff0c;IP地址跟踪和管理与网络相关的信息的互联网协议地址空间和IPAM系统。 IPAM软件和IP的工具,管理员可以确保分配IP地址仍然是当前和足够的库存先进的IP工具和IPAM服务。 IPAM简化并自动化…

web前端之引入svg图片、html引入点svg文件、等比缩放、解决裁剪问题、命名空间、object标签、阿里巴巴尺量图、embed标签、iframe标签

MENU 前言直接在页面编写svg使用img标签引入通过css引入使用object标签引入其他标签参考资料 前言 web应用开发使用svg图片的方式&#xff0c;有如下几种方式 1、直接在页面编写svg 2、使用img标签引入 3、通过css引入 4、使用object标签引入 直接在页面编写svg 在html页面直接…

Redis-缓存高可用集群

Redis集群方案比较 哨兵模式 性能和高可用性等各方面表现一般&#xff0c;特别是在主从切换的瞬间存在访问瞬断的情况。另外哨兵模式只有一个主节点对外提供服务&#xff0c;没法支持很高的并发&#xff0c;且单个主节点内存也不宜设置得过大&#xff0c;否则会导致持久化文件过…

中国信通院王蕴韬:从“好用”到“高效”,AIGC需要被再次颠覆

当下AIGC又有了怎样的颠覆式技术&#xff1f;处于一个怎样的发展阶段&#xff1f;产业应用如何&#xff1f;以及存在哪些风险&#xff1f;针对这些问题&#xff0c;我们与中国信通院云计算与大数据研究所副总工程师王蕴韬进行了一次深度对话&#xff0c;从他哪里找到了这些问题…

萨科微举办工作交流和业务分享会

萨科微&#xff08;www.slkoric.com&#xff09;举办工作交流和业务分享会&#xff0c;狠抓人才培养团队的基本功建设。萨科微总经理宋仕强先生认为&#xff0c;当下市场经济形势复杂多变&#xff0c;给公司经营带来巨大压力&#xff0c;同时考验着企业自身的发展韧性。萨科微公…

【Linux基础】Linux常见指令总结及周边小知识

前言 Linux系统编程的学习我们将要开始了&#xff0c;学习它我们不得不谈谈它的版本发布是怎样的&#xff0c;谈它的版本发布就不得不说说unix。下面是unix发展史是我在百度百科了解的 Unix发展史 UNIX系统是一个分时系统。最早的UNIX系统于1970年问世。此前&#xff0c;只有…

基于厨师算法优化概率神经网络PNN的分类预测 - 附代码

基于厨师算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于厨师算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于厨师优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神经网络的光滑…

gobuster扫描工具使用教程(简单上手)

gobuster扫描工具使用教程 gobuster是干嘛用的? Gobuster是一个用于网络渗透测试的工具。它主要用于在Web应用程序中发现隐藏的内容或目录枚举&#xff0c;可以扫描子域名以及Web目录&#xff0c;寻找可能存在的漏洞。这个工具使用Go语言编写&#xff0c;具备优异的执行效率…

mac电脑文件比较工具 UltraCompare 中文for mac

UltraCompare是一款功能强大的文件和文件夹比较工具&#xff0c;用于比较和合并文本、二进制和文件夹。它提供了丰富的功能和直观的界面&#xff0c;使用户能够轻松地比较和同步文件内容&#xff0c;查找差异并进行合并操作。 以下是UltraCompare软件的一些主要特点和功能&…

C语言—一维数组

一、一维数组的创建 int arr1[10];char arr2[10];flout arr3[1];double arr4[20]; 数组创建,“[ ]”中要给一个常量&#xff0c;不能使用变量 二、一维数组初始化 int arr1[10]{1,2,3}; //不完全初始化int arr2[4]{3,4,5,6}; //完全初始化char arr3[4]{a,b,99,d};cha…