基于人工兔算法优化概率神经网络PNN的分类预测 - 附代码

基于人工兔算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于人工兔算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于人工兔优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用人工兔算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于人工兔优化的PNN网络

人工兔算法原理请参考:https://blog.csdn.net/u011835903/article/details/128491707

利用人工兔算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

人工兔参数设置如下:

%% 人工兔参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,人工兔-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/187477.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

CDN的认识与绕过

CDN的认识与绕过 什么是CDN CDN的全称是Content Delivery Network,即内容分发网络。它依靠部署在各地的边缘服务器,通过中心平台的负载均衡、内容分发、调度等功能模块,使用户就近获取所需内容,降低网络拥塞,提高用户…

万字解析设计模式之策略模式、命令模式

一、策略模式 1.1概述 先看下面的图片,我们去旅游选择出行模式有很多种,可以骑自行车、可以坐汽车、可以坐火车、可以坐飞机。 策略模式(Strategy Pattern)是一个行为型设计模式,它定义了一组算法家族,分…

今年的校招薪资真的让人咋舌!

秋招接近尾声,各大公司基本也陆续开奖了。这里整理了部分公司的薪资情况,数据来源于 OfferShow 和牛客网。 ps:爆料薪资的几乎都是 211 和 985 的,并不是刻意只选取学校好的。另外,无法保证数据的严格准确性。 淘天 …

【实战】K8S Helm部署Redis Cluster Redisinsight

文章目录 前言部署Redis Cluster安装Redis Insight写在最后 前言 在Web服务的开发过程中,Redis一直以来都有着举足轻重的作用。基本上所有的后端服务都会用这个中间件实现具体的业务场景,比如常作为系统缓存、分布式锁,也可以实现排名、定位…

向量机SVM原理理解和实战

目录 概念场景导入 点到超平面的距离公式 最大间隔的优化模型 硬间隔、软间隔和非线性 SVM 用 SVM 如何解决多分类问题 1. 一对多法 2. 一对一法 SVM主要原理和特点 原理 优点 缺点 支持向量机模型分类 SVM实战如何进行乳腺癌检测 数据集 字段含义 代码实现 参…

apple macbook M系列芯片安装 openJDK17

文章目录 1. 查找openjdk版本2. 安装openjdk3. 多jdk之间的切换 在这里我们使用 brew 命令查找并安装。 1. 查找openjdk版本 执行:brew search openjdk,注意:执行命令后,如果得到的结果中没有红框内容,则需要更新一下…

docker部署phpIPAM

0说明 IPAM:IP地址管理系统 IP地址管理(IPAM)是指的一种方法IP扫描,IP地址跟踪和管理与网络相关的信息的互联网协议地址空间和IPAM系统。 IPAM软件和IP的工具,管理员可以确保分配IP地址仍然是当前和足够的库存先进的IP工具和IPAM服务。 IPAM简化并自动化…

web前端之引入svg图片、html引入点svg文件、等比缩放、解决裁剪问题、命名空间、object标签、阿里巴巴尺量图、embed标签、iframe标签

MENU 前言直接在页面编写svg使用img标签引入通过css引入使用object标签引入其他标签参考资料 前言 web应用开发使用svg图片的方式,有如下几种方式 1、直接在页面编写svg 2、使用img标签引入 3、通过css引入 4、使用object标签引入 直接在页面编写svg 在html页面直接…

Redis-缓存高可用集群

Redis集群方案比较 哨兵模式 性能和高可用性等各方面表现一般,特别是在主从切换的瞬间存在访问瞬断的情况。另外哨兵模式只有一个主节点对外提供服务,没法支持很高的并发,且单个主节点内存也不宜设置得过大,否则会导致持久化文件过…

中国信通院王蕴韬:从“好用”到“高效”,AIGC需要被再次颠覆

当下AIGC又有了怎样的颠覆式技术?处于一个怎样的发展阶段?产业应用如何?以及存在哪些风险?针对这些问题,我们与中国信通院云计算与大数据研究所副总工程师王蕴韬进行了一次深度对话,从他哪里找到了这些问题…

萨科微举办工作交流和业务分享会

萨科微(www.slkoric.com)举办工作交流和业务分享会,狠抓人才培养团队的基本功建设。萨科微总经理宋仕强先生认为,当下市场经济形势复杂多变,给公司经营带来巨大压力,同时考验着企业自身的发展韧性。萨科微公…

【Linux基础】Linux常见指令总结及周边小知识

前言 Linux系统编程的学习我们将要开始了,学习它我们不得不谈谈它的版本发布是怎样的,谈它的版本发布就不得不说说unix。下面是unix发展史是我在百度百科了解的 Unix发展史 UNIX系统是一个分时系统。最早的UNIX系统于1970年问世。此前,只有…

基于厨师算法优化概率神经网络PNN的分类预测 - 附代码

基于厨师算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于厨师算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于厨师优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神经网络的光滑…

gobuster扫描工具使用教程(简单上手)

gobuster扫描工具使用教程 gobuster是干嘛用的? Gobuster是一个用于网络渗透测试的工具。它主要用于在Web应用程序中发现隐藏的内容或目录枚举,可以扫描子域名以及Web目录,寻找可能存在的漏洞。这个工具使用Go语言编写,具备优异的执行效率…

mac电脑文件比较工具 UltraCompare 中文for mac

UltraCompare是一款功能强大的文件和文件夹比较工具,用于比较和合并文本、二进制和文件夹。它提供了丰富的功能和直观的界面,使用户能够轻松地比较和同步文件内容,查找差异并进行合并操作。 以下是UltraCompare软件的一些主要特点和功能&…

C语言—一维数组

一、一维数组的创建 int arr1[10];char arr2[10];flout arr3[1];double arr4[20]; 数组创建,“[ ]”中要给一个常量,不能使用变量 二、一维数组初始化 int arr1[10]{1,2,3}; //不完全初始化int arr2[4]{3,4,5,6}; //完全初始化char arr3[4]{a,b,99,d};cha…

MYSQL基础知识之【数据类型】

文章目录 前言标题一数值类型日期和时间类型字符串类型后言 前言 hello world欢迎来到前端的新世界 😜当前文章系列专栏:Mysql 🐱‍👓博主在前端领域还有很多知识和技术需要掌握,正在不断努力填补技术短板。(如果出现错…

能让PDF看起来像是扫描件的Look Scanned

什么是 Look Scanned ? Look Scanned 是一个能够让 PDF 看起来就像是扫描件一样的纯前端网站。你再也不需要麻烦地打印之后扫描了,你所需要的就是鼠标点几下。 这是个挺有意思的软件,但是老苏不确定什么场景下会用到这个软件,如果不想自己搭…

通过JMeter压测结果来分析Eureka多种服务下线机制后的服务感知情况

文章目录 前言1. Eureka-Server的设计2. EurekaRibbon感知下线服务机制3.服务调用接口压测模型4.Eureka几种服务下线的方式4.1强制下线压测 4.2 发送delete()请求压测 4.3 调用DiscoveryManager压测 4. 三方工具Actuator 总结 前言 上文末尾讲到了Eurek…

Leetcode—1457.二叉树中的伪回文路径【中等】

2023每日刷题(四十) Leetcode—1457.二叉树中的伪回文路径 实现代码 /*** Definition for a binary tree node.* struct TreeNode {* int val;* struct TreeNode *left;* struct TreeNode *right;* };*/ int record[10] {0};int accumula…