sensor的感光原理

文章内容来自网络,联系我可以删掉。

目录

CMOS sensor上有什么?

不同像素对应的图像质量:

像点感光原理:

Bayer格式变换成RGB格式:


CMOS sensor上有什么?

CMOS sensor 通常由像敏单元阵列、行驱动器、列驱动器、时序控制逻辑、AD转换器、数据总线输出接口、控制接口等几部分组成。这几部分功能通常都被集成在同一块硅片上,其工作过程一般可分为复位、光电转换、积分、读出几部分,如下所示。

 camera 产品中,CMOS sensor 是当之无愧的核心元件,它位于镜头和图像信号处理器(ISP)之间,把光信号转换成ISP能够处理的数字信号(电信号。CMOS sensor 让光子直接进入晶体管内部生成电流,光信号的强弱直接决定了电流的大小)。CMOS sensor 与镜头、ISP一起构成了camera 的灵魂,决定了camera 的核心价值。

不同像素对应的图像质量:

像素是camera 的常用宣传点。

(为社么总是说以前的手机拍照好看?因为像素低,拍不出来瑕疵啊啊啊) 

像点感光原理:

sensor的感光原理的基础是光电效应。sensor的感光单元,在接受到外界的光刺激之后,会产生一定的电信号,经过处理之后,就能够显示外界图像信息。

Sensor感光的基本单元的解剖结构如下图所示。

图像的发展史,从黑白照片变为彩色图像,那么如何得到彩色的显示图像呢?这就需要对像素单元作一定的处理

光学上,对于彩色图像,需要采集最基本的颜色,如rgb三种颜色。因此sensor 获取彩色图像,最简单的方法就是用彩色滤镜的方法,来获取三原色。红色的滤镜透过红色的波长,绿色的滤镜透过绿色的波长,蓝色的滤镜透过蓝色的波长。如果在一个感光单元上要采集rgb三个基本色,则需要三块滤镜,这样价格昂贵,且不好制造,因为三块滤镜都必须保证每一个像素点都对齐。当用bayer格式的时候,很好的解决了这个问题。bayer 格式图片在一块滤镜上按固定的排列设置不同的颜色区块。通过分析人眼对颜色的感知发现,人眼对绿色比较敏感,所以一般bayer格式的图片绿色格式的像素是是r和g像素的和。

Bayer格式是相机内部的原始图片一般后缀名为.raw。很多软件都可以查看比如PS。我们相机拍照下来存储在存储卡上的.jpeg或其它格式的图片都是从.raw格式转化过来的。

根据人眼对彩色的响应带宽不高的大面积着色特点,每个像素没有必要同时输出3种颜色。因此,数据采样时,

奇数扫描行的第1,2,3,4,…象素分别采样和输出R,G,R,G,…数据;

偶数扫描行的第1,2,3,4,…象素分别采样和输出G,B,G,B,…数据。

在实际处理时,每个象素的R,G,B信号由象素本身输出的某一种颜色信号和相邻象素输出的其他颜色信号构成。这种采样方式在基本不降低图像质量的同时,可以将采样频率降低60%以上。

Image Sensor往外逐行输出数据时,像素的序列为GRGRGR.../BGBGBG...(顺序RGB)。这样阵列的Sensor设计,使得RGB传感器减少到了全色传感器的1/3

综合以上的采样方法,一个严格意义上的像素,是一个具备红、绿、蓝三个颜色分量的组合体,能够表达RGB空间中的一个点。事实上,sensor的一个像点只能表达三种颜色中的一个,所以在sensor范畴内并不存在严格意义上的像素概念。但是很多情况下人们并不刻意区分像素和像点在概念上的差别,经常会用像素来指代像点。

Bayer格式图片是科学家Bryce Bayer发明的,拜耳阵列被广泛运用与数字图像处理领域。不同的sensor可能设计成不同的布局方式,下面是几种常见的布局

Bayer格式变换成RGB格式:

为了从Bayer格式得到每个像素的RGB格式,我们需要通过插值填补缺失的2个色彩。插值的方法有很多(包括领域、线性、3*3等),速度与质量权衡,最好的线性插值补偿算法。其中算法如下:

R和B通过线性领域插值,但这有四种不同的分布,如下图所示:

  在(a)与(b)中,R和B分别取邻域的平均值。

  在(c)与(d)中,取领域的4个B或R的均值作为中间像素的B值。

 

4 bayer格式插值绿算法实现。(e),(f)

由于人眼对绿光反应最敏感,对紫光和红光则反应较弱,因此为了达到更好的画质,需要对G特殊照顾。在上述(c)与(d)中,扩展开来就是上图的(e)与(f)中间像素G的取值,者也有一定的算法要求

e)中间像素G值的算法如下: 

 

f)中间像素G值的算法如下: 

     

 

CMOS摄像头这部分转换是在内部用ADC或者ISP完成的,生产商为了降低成本必然会使得图像失真。当然用外部处理器来实现转换,如果处理器的速度足够NB,能够胜任像素的操作,用上面的算法来进行转换,皆大欢喜。不过上述算法将直接成倍提高了算法的复杂度,速度上将会有所限制。因此为了速度的提成,可以直接通过来4领域G取均值来中间像素的G值,将会降低一倍的速率,而在性能上差之甚微,算法如下:

 

如果能够通过损失图像的额质量,来达到更快的速度,还可以取G1、G2的均值来实现,但是这样的做法会导致边沿以及跳变部分的失真。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/18721.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

第10章:数据处理增删改

一、插入数据 CREATE TABLE emp1 (id int(11) ,name varchar(15) ,hire_date date ,salary double(10,2) )1.添加一条数据 ①没有指明添加的字段,一定按照顺序添加 insert into emp1 values(1,wang,2000-4-4,5900)②指明添加的字段(推荐)…

【CSS3】CSS3 属性选择器 ( CSS3 简介 | 属性选择器 | 属性选择器权重 )

文章目录 一、CSS3 简介二、CSS3 属性选择器权重三、CSS3 属性选择器 一、CSS3 简介 CSS3 是在 CSS2 基础上进行扩展后的样式 ; 在 移动端 对 CSS3 的支持 要比 PC 端支持的更好 , 建议在移动端开发时 , 多使用 CSS3 ; PC 端老版本浏览器不支持 CSS3 , 尤其是 IE 9 及以下的版…

Qt5.9学习笔记-事件(五) 事件调试和排查

⭐️我叫忆_恒心,一名喜欢书写博客的在读研究生👨‍🎓。 如果觉得本文能帮到您,麻烦点个赞👍呗! 近期会不断在专栏里进行更新讲解博客~~~ 有什么问题的小伙伴 欢迎留言提问欧,喜欢的小伙伴给个三…

【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】

目录 1.简介2.环境安装2.1安装torch相关库2.2 获取yolov8最新版本,并安装依赖 3. 如何使用模型用于各种CV任务3.1 目标检测任务实现检测图片代码检测视频代码 3.2 分割任务实现分割图片代码分割视频代码 3.3 追踪任务3.4 姿态检测任务姿态检测(图片&…

数据结构之“树”——二叉树、红黑树、B树、B+树、B*树

这篇文章主要简单总结下二叉树、红黑树、B树、B树、B*树的基本结构和原理。 一、二叉树 二叉树就是度不超过2的树(每个结点最多有两个子结点)。 二叉树是有序树(二叉排序树),若将其左右子树颠倒,则成为另一棵不同的二叉树。 二叉…

php+vue+mysql医院医护人员医生排班系统

本医护人员排班系统管理员,医护。管理员功能有个人中心,医院信息管理,医护信息管理,医护类型管理,排班信息管理,排班类型管理,科室信息管理,投诉信息管理。医护人员可以修改自己的个…

「二线豪华」或成历史,理想反超沃尔沃再树「里程碑」

今年的上海车展,除了占据C位的新能源汽车,还有传统车企。 上海车展开幕前,沃尔沃汽车大中华区销售公司总裁钦培吉在新车发布会上直言:“新势力会的,我们三年就学会了;我们会的,新势力十年都学不…

Android安装apk出现 “安装包无效”或“安装包不兼容”的解决方案

Android 安装apk出现“安装包无效”或“安装包不兼容”解决方案 1. 问题出现2. 配置 build.gradle3. 生成Signed APK 1. 问题出现 使用Android Studio安装apk到手机一切正常,但是分享出去出现安装apk出现“安装包无效”或“安装包不兼容”问题 这种情况需要我们设…

4 IK分词器

4 IK分词器 4.1测试分词器 在添加文档时会进行分词,索引中存放的就是一个一个的词(term),当你去搜索时就是拿关键字去匹配词,最终 找到词关联的文档。 测试当前索引库使用的分词器: post 发送&#xff…

【分布式理论】聊一下 ACID、BASE、CAP、FLP

分布式理论基础 今天我们来聊一下分布式相关基础理论基础,上一篇文章中,我描述了一下分布式系统的纲,但是想要入手学习分布式系统设计,其实需要先从基本理论开始。而知名的ACID、BASE、CAP、FLP都是相关的理论基础。 ACID ACID…

六、FM1288调试方案-调试过程及细节

本篇文章,主要讲述实际调试操作:具体到需要调节哪些寄存器,调节完后,会有什么样的变化。但是整体效果不能达到我们期望的绝对感觉,所以我先把我们调试的结果放在前面,如果觉得不理想,也可以不看后面的内容了。 文章目录 1. 调试准备1.1 建立与FM1288芯片通信1.2 Uart结…

什么是多相流?在熟悉工业中常见的两相及多相流的分类及特点

文章目录 一、多相流的概览1.相的概念 二、多相流的引入单相流与多相流: 三、多相流及特性介绍四、常见的多相流的分类及特点1、常见的两相及多相流3、两相流动力学的发展简史4、两相流的研究方法和理论模型 一、多相流的概览 1.相的概念 物理学: 自然界中物质的态…

基于simulink使用麦克风阵列的声波束成形

一、前言 此示例演示如何对麦克风阵列接收到的信号进行波束化,以在嘈杂环境中提取所需的语音信号。 二、模型的结构 该模型模拟在 10 元件均匀线性麦克风阵列 (ULA) 上接收来自不同方向的三个音频信号。在接收器处添加热噪声后,应…

智慧厕所引导系统的应用

智慧公厕引导系统是一种基于智能化技术的公厕管理系统,可以为如厕者提供更加便捷、舒适、安全的如厕环境和服务,同时也可以引导如厕者文明如厕,营造文明公厕的氛围。智慧公厕引导系统可以通过智能引导屏、手机小程序等方式,为如厕…

【存储数据恢复】NetApp存储WAFL文件系统数据恢复案例

存储数据恢复环境: NetApp存储设备,WAFL文件系统,底层是由多块硬盘组建的raid磁盘阵列。 存储故障: 工作人员误操作导致NetApp存储内部分重要数据被删除。 存储数据恢复过程: 1、将存储设备的所有磁盘编号后取出&…

Linux上Nacos基本使用:连接MySQL并修改密码、启动、停止命令等

Nacos如何连接MySQL并修改密码 说明如何将内嵌数据库Derby切换为MySQL数据库直接新建MySQL数据库: 必须是MySQL5.7及以上 如何修改密码启动、停止命令 说明 nacos默认: 使用内嵌的数据库(Derby)默认登录地址 ip:8848/nacos; 账号&#xff1…

React 组件

文章目录 React 组件复合组件 React 组件 本节将讨论如何使用组件使得我们的应用更容易来管理。 接下来我们封装一个输出 “Hello World&#xff01;” 的组件&#xff0c;组件名为 HelloMessage&#xff1a; React 实例 <!DOCTYPE html> <html> <head> &…

JVM系列-第7章-对象的实例化内存布局与访问定位

对象的实例化内存布局与访问定位 对象的实例化 大厂面试题 美团&#xff1a; 对象在JVM中是怎么存储的&#xff1f;对象头信息里面有哪些东西&#xff1f; 蚂蚁金服&#xff1a; 二面&#xff1a;java对象头里有什么 对象创建的方式 new&#xff1a;最常见的方式、单例…

系统分析师之系统设计(十五)

目录 一、软件流程设计 1.1 业务流程分析方法 1.2 业务流程建模 1.2.1 标杆瞄准 1.2.2 IDEF 1.2.3 DEMO 1.2.4 流程建模语言 1.2.5 基于服务的BPM 1.2.6 业务流程重组BPR 1.2.7 业务流程管理BPM 二、软件架构设计 2.1 概念 2.2 软件架构风格 三、 结构化设计 四…

为什么停更ROS2机器人课程-2023-

机器人工匠阿杰肺腑之言&#xff1a; 我放弃了ROS2课程 真正的危机不是同行竞争&#xff0c;比如教育从业者相互竞争不会催生ChatGPT…… 技术变革的突破式发展通常是新势力带来的而非传统行业的升级改革。 2013年也就是10年前在当时主流视频网站开启分享&#xff1a; 比如 …