基于Python的面向对象分类实例Ⅱ

接上一部分继续介绍~

一、地类矢量转栅格

这一步是为了能让地类值和影像的对象落在同一区域,从而将影像中的分割对象同化为实际地物类别。


train_fn = r".\train_data1.shp"
train_ds = ogr.Open(train_fn)
lyr = train_ds.GetLayer()
driver = gdal.GetDriverByName('MEM')
target_ds = driver.Create('', im_width, im_height, 1, gdal.GDT_UInt16)
target_ds.SetGeoTransform(im_geotrans)
target_ds.SetProjection(im_proj)
options = ['ATTRIBUTE=tyPE']
gdal.RasterizeLayer(target_ds, [1], lyr, options=options)
data = target_ds.GetRasterBand(1).ReadAsArray()
ground_truth = target_ds.GetRasterBand(1).ReadAsArray()
ground_truth = ground_truth.transpose((1, 0))
classes = np.unique(ground_truth)[1:]

最终得到带有地物类别数据的栅格点数据。

二、特征匹配

将得到的栅格点真实地物数据通过迭代与影像对象相匹配后,通过迭代器寻找对象的相应特征。


segments_per_class = {}
for klass in classes:
    segments_of_class = segments[ground_truth == klass]
    segments_per_class[klass] = set(segments_of_class)
 
intersection = set()
accum = set()
for class_segments in segments_per_class.values():
    intersection |= accum.intersection(class_segments)
    accum |= class_segments
assert len(intersection) == 0, "Segment(s) represent multiple classes"
print("adjust complete")
end3 = time.time()
print('Running time2: %s Seconds'%(end3-start3))




print("start train randomforest classification")
start4 = time.time()
train_img = np.copy(segments)
threshold = train_img.max() + 1 

for klass in classes:
    class_label = threshold + klass
    for segment_id in segments_per_class[klass]:
        train_img[train_img == segment_id] = class_label
 
train_img[train_img <= threshold] = 0
train_img[train_img > threshold] -= threshold

training_objects = []
training_labels = []
for klass in classes:
    class_train_object = [v for i, v in enumerate(objects) if segment_ids[i] in segments_per_class[klass]]
    training_labels += [klass] * len(class_train_object)
    training_objects += class_train_object

在实际的影像样本构建过程中,有的地物样本可能彼此距离相差较小,造成两个或多个样本落在同一个分割区域,这样会导致特征匹配迭代无限进行下去,所以我们要从两个或多个样本中取其一。

三、分类

最后利用scikit-learn的随机森林分类器,对样本分割块和其他未定义分割块进行预测,最后将结果输出到栅格中。


def PolygonizeTheRaster(inputfile,outputfile):
    dataset = gdal.Open(inputfile, gdal.GA_ReadOnly)
    srcband=dataset.GetRasterBand(1)
    im_proj = dataset.GetProjection()
    prj = osr.SpatialReference() 
    prj.ImportFromWkt(im_proj)
    drv = ogr.GetDriverByName('ESRI Shapefile')
    dst_ds = drv.CreateDataSource(outputfile)
    dst_layername = 'out'
    dst_layer = dst_ds.CreateLayer(dst_layername, srs=prj)
    dst_fieldname = 'DN'
    fd = ogr.FieldDefn(dst_fieldname, ogr.OFTInteger)
    dst_layer.CreateField(fd)
    dst_field = 0
    gdal.Polygonize(srcband, None, dst_layer, dst_field) 

classifier = RandomForestClassifier(n_jobs=-1)  
classifier.fit(training_objects, training_labels) 
predicted = classifier.predict(objects)  

clf = segments.copy()
for segment_id, klass in zip(segment_ids, predicted):
    clf[clf == segment_id] = klass
# temp = temp.transpose((2, 1, 0))
mask = np.sum(temp, axis=2)  
mask[mask > 0.0] = 1.0   
mask[mask == 0.0] = -1.0

clf = np.multiply(clf, mask)
clf[clf < 0] = -9999.0
clf = clf.transpose((1, 0))
clfds = driverTiff.Create(r"D:\Data\testdata\classification\result.tif", im_width, im_height,
                          1, gdal.GDT_Float32) 
clfds.SetGeoTransform(im_geotrans)
clfds.SetProjection(im_proj)
clfds.GetRasterBand(1).SetNoDataValue(-9999.0)
clfds.GetRasterBand(1).WriteArray(clf)
clfds = None

end4 = time.time()
outputfile = r".\result2.shp"
print('Running time2: %s Seconds'%(end4-start4))
PolygonizeTheRaster(r".\result.tif",outputfile)

类在影像中的标记ID是1、2、3等等数值,因此用一般的栅格查看软件很难从肉眼进行查看。这里为了方便读者查看以及制图,我还进行了栅格转矢量的操作,这样放到arcmap中能清晰的查看分类情况。

最后的分类结果:

图1 分类结果图

图2 林地分类效果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/186901.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ASO优化之如何测试应用的屏幕截图

截取屏幕截图并上传到应用商店后&#xff0c;我们需要对其进行测试和优化&#xff0c;从而来获得更高的转化率&#xff0c;精美的图片有助于提高应用在商店的安装率。 1、定义目标受众。 战略性地决定测试哪些目标受众&#xff0c;可以通过年龄、性别、地点、兴趣等来定义我们…

[ZJCTF 2019]NiZhuanSiWei

虽然有include函数但我们无法直接包含flag因为对file进行了过滤&#xff0c;又看见有反序列化的入口&#xff0c;只是并没有发现可利用的方法&#xff0c;但题目有提示所以尝试将其调出来 php伪协议写入内容 看到file_get_contents函数想到使用data协议&#xff0c;去封装一个…

发现有一个会Python的男友魅力值杠杠的!!!

Python能做什么&#xff1f; 可以做日常任务&#xff0c;比如自动备份你的MP3&#xff0c;可以做网站&#xff0c;很多著名的网站像知乎、YouTube就是Python写的&#xff0c; 可以做网络游戏的后台&#xff0c;很多在线游戏的后台都是Python开发的。 上面说的这些本人并没有实…

Spring Boot Actuator 2.2.5 基本使用

1. pom文件 &#xff0c;添加 Actuator 依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-actuator</artifactId> </dependency> 2.application.properties 文件中添加以下配置 …

[SWPUCTF 2021 新生赛]no_wakeup

直接赋值即可 $a ->admin admin; $a ->passwd wllm; 发现没有绕过&#xff0c;改成大于2的绕过__wakeup 这是因为PHP在反序列化时会检查序列化字符串的长度&#xff0c;如果长度小于等于2&#xff0c;则不会调用__wakeup()方法。

华为云之在Linux系统下安装可视化界面

华为云之在Linux系统下安装可视化界面 一、华为云弹性云服务器ECS介绍二、Linux图形化界面介绍三、本次实践介绍3.1 本次实践简介3.2 本次实践环境介绍 四、环境准备工作4.1 预置环境4.2 查看预置环境资源信息 五、连接弹性云服务器ECS5.1 登录华为云5.2 复制ECS弹性公网IP地址…

css给盒子写四个角

如图&#xff1a;之前一直用定位 现在发现可以用css写 background: linear-gradient(to top, #306eef, #306eef) left top no-repeat, /*上左*/ linear-gradient(to right, #306eef, #386eef) left top no-repeat, /*左上*/ linear-gradient(to left, #386eef, #306eef) righ…

BUUCTF [MRCTF2020]ezmisc 1

BUUCTF:https://buuoj.cn/challenges 题目描述&#xff1a; 得到的 flag 请包上 flag{} 提交。 感谢Galaxy师傅供题。 密文&#xff1a; 下载附件&#xff0c;解压得到.png图片。 从这里也可以看出图片经过修改&#xff0c;无法正常显示。 解题思路&#xff1a; 1、在010 E…

《opencv实用探索·二》根据RGB的像素排列来理解图像深度、像素深度和位深度

通常对于RGB图像主要分为RGB16&#xff0c;RGB24和RGB32。RGB16从高位到低位的排列为R->G->B&#xff0c;RGB24和RGB32从高位到低位的排列为B->G->R。 RGB16: 16 位为一个存储单元&#xff08;一个像素&#xff09;&#xff0c;来存储一个RGB像素;因为人眼对绿色比…

关于提示SLF4J: Class path contains multiple SLF4J bindings的问题解决

今天搭建hbase的时候启动hbase的时候shell面板输入了一大堆日志&#xff0c;如下&#xff1a; stopping hbase.....................SLF4J: Class path contains multiple SLF4J bindings.SLF4J: Found binding in [jar:file:/opt/software/hadoop-3.1.3/share/hadoop/common/l…

优秀软件设计特征与原则

1.摘要 一款软件产品好不好用, 除了拥有丰富的功能和人性化的界面设计之外, 还有其深厚的底层基础, 而设计模式和算法是构建这个底层基础的基石。好的设计模式能够让产品开发快速迭代且稳定可靠, 迅速抢占市场先机&#xff1b;而好的算法能够让产品具有核心价值, 例如字节跳动…

【Linux】Linux权限管理

目录 一、Linux中权限的概念 二、 Linux下的用户 2.1 用户的类型 2.2 用户创建、切换和删除 2.2.1 useradd或adduser命令创建用户 2.2.2 passwd命令设置用户密码 2.2.3 userdel命令删除用户 2.2.4 su命令切换用户身份等来管理和操作用户 2.3 注意事项 三、权限的管理…

STM32 寄存器配置笔记——USART配置中断接收乒乓缓存处理

一、概述 本文主要介绍如何配置USART接收中断&#xff0c;使用乒乓缓存的设计接收数据并将其回显在PC 串口工具上。以stm32f10为例&#xff0c;配置USART1 9600波特率。具体配置参考上一章节STM32 寄存器配置笔记——USART配置 打印。 乒乓缓存的设计应用场景&#xff1a;当后面…

EEG 脑电信号处理合集(2): 信号预处理

脑电信号在采集完以后&#xff0c;需要进行一系列的预处理操作&#xff0c;然后才能用于后续的科学研究和计算。预处理是脑电信号分析最基本且重要的一步。基于python环境MNE库。 1 使用带通滤波器&#xff0c;信号滤波&#xff0c;去噪&#xff0c;去工频干扰 data_path sam…

C#,《小白学程序》第十五课:随机数(Random)第二,统计学初步,数据统计的计算方法与代码

1 文本格式 /// <summary> /// 《小白学程序》第十五课&#xff1a;随机数&#xff08;Random&#xff09;第二&#xff0c;统计学初步&#xff0c;数据统计的计算方法与代码 /// 用随机数做简单的统计并用图形显示统计结果。 /// </summary> /// <param name&q…

【最新版】SolidWorks 2023 SP5.0 完整版安装包+安装教程

分享模式&#xff1a;免费/绿色&#xff0c;按教程安装 下载地址&#xff1a; https://pan.xunlei.com/s/VNL0-DD_ogcRFwy-xi0HUtlyA1?pwdfzqw# 提取码&#xff1a;fzqw SOLIDWORKS 2023新版本对电脑配置要求 更多详细说明请去官网查看。 安装使用方法&#xff1a; 一、卸…

雅可比矩阵(Jacobian Matrix)

假设给定一个从n维欧式空间到m维欧式空间的变换: 雅可比矩阵就是将一阶偏导数排列成一个m行、n列形式的矩阵&#xff0c;记作&#xff1a; 举一个例子&#xff1a; 雅可比矩阵等于&#xff1a;

ubuntu挂载硬盘方法

1.关闭服务器加上新硬盘 2.启动服务器&#xff0c;以root用户登录 3.查看硬盘信息 fdisk -l4.格式化分区 找到需要分区的目录,并记录分区的uuid&#xff0c;用于后面修改/etc/fstab永久挂载配置文件 mkfs.ext4 /dev/nvme0n1 mkfs.ext4 /dev/nvme1n1 Filesystem UUID: a1c…

数据资产确权的难点

数据是企业的重要资产之一&#xff0c;但是许多企业对于这项资产在管理上都面临着一些挑战&#xff0c;其中最关键就是数据确权的问题。接下来&#xff0c;将探讨数据资产确权的难点&#xff0c;并提出相应的解决方案&#xff0c;一起来看吧。 首先介绍一下数据资产入表的背景以…

一键填充字幕——Arctime pro

之前的博客中&#xff0c;我们聊到了PR这款专业的视频制作软件&#xff0c;但是pr有许多的功能需要搭配使用&#xff0c;相信不少小伙伴在剪辑视频时会发现一个致命的问题&#xff0c;就是字幕编写。伴随着人们对字幕需求的逐渐增加&#xff0c;这款软件便应运而生~ 相信应该有…