论文笔记——FasterNet

89c5fc24e467b71219002f1f95258eae.png

为了设计快速神经网络,许多工作都集中在减少浮点运算(FLOPs)的数量上。然而,作者观察到FLOPs的这种减少不一定会带来延迟的类似程度的减少。这主要源于每秒低浮点运算(FLOPS)效率低下。

为了实现更快的网络,作者重新回顾了FLOPs的运算符,并证明了如此低的FLOPS主要是由于运算符的频繁内存访问,尤其是深度卷积。因此,本文提出了一种新的partial convolution(PConv),通过同时减少冗余计算和内存访问可以更有效地提取空间特征。

基于PConv进一步提出FasterNet,这是一个新的神经网络家族,它在广泛的设备上实现了比其他网络高得多的运行速度,而不影响各种视觉任务的准确性。例如,在ImageNet-1k上小型FasterNet-T0在GPU、CPU和ARM处理器上分别比MobileVitXXS快3.1倍、3.1倍和2.5倍,同时准确度提高2.9%。

大模型FasterNet-L实现了令人印象深刻的83.5%的TOP-1精度,与Swin-B不相上下,同时GPU上的推理吞吐量提高了49%,CPU上的计算时间也节省了42%。

1、简介

神经网络在图像分类、检测和分割等各种计算机视觉任务中经历了快速发展。尽管其令人印象深刻的性能为许多应用程序提供了动力,但一个巨大的趋势是追求具有低延迟和高吞吐量的快速神经网络,以获得良好的用户体验、即时响应和安全原因等。

如何快速?研究人员和从业者不需要更昂贵的计算设备,而是倾向于设计具有成本效益的快速神经网络,降低计算复杂度,主要以浮点运算(FLOPs)的数量来衡量。

MobileNet、ShuffleNet和GhostNet等利用深度卷积(DWConv)和/或组卷积(GConv)来提取空间特征。然而,在减少FLOPs的过程中,算子经常会受到内存访问增加的副作用的影响。MicroNet进一步分解和稀疏网络,将其FLOPs推至极低水平。尽管这种方法在FLOPs方面有所改进,但其碎片计算效率很低。此外,上述网络通常伴随着额外的数据操作,如级联、Shuffle和池化,这些操作的运行时间对于小型模型来说往往很重要。

除了上述纯卷积神经网络(CNNs)之外,人们对使视觉Transformer(ViTs)和多层感知器(MLP)架构更小更快也越来越感兴趣。例如,MobileViT和MobileFormer通过将DWConv与改进的注意力机制相结合,降低了计算复杂性。然而,它们仍然受到DWConv的上述问题的困扰,并且还需要修改的注意力机制的专用硬件支持。使用先进但耗时的标准化和激活层也可能限制其在设备上的速度。

所有这些问题一起导致了以下问题:这些“快速”的神经网络真的很快吗?为了回答这个问题,作者检查了延迟和FLOPs之间的关系,这由

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/186613.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

电源控制系统架构(PCSA)之电源状态层级

目录 5.2 电源状态层级 5.2.1 Core电源状态 5.2.2 Cluster的电源状态 5.2.3 设备电源状态 5.2.4 SOC电源状态 5.2 电源状态层级 电源状态可以组织为电源状态表的层次结构。每个电源状态表描述在其层次结构级别上可用的电源状态。 从系统级电源控制的角度来看&#xff0c…

Oracle研学-介绍及安装

一 ORACLE数据库特点: 支持多用户,大事务量的事务处理数据安全性和完整性控制支持分布式数据处理可移植性(跨平台,linux转Windows) 二 ORACLE体系结构 数据库:oracle是一个全局数据库,一个数据库可以有多个实例,每个…

Azure Machine Learning - Azure可视化图像分类操作实战

目录 一、数据准备二、创建自定义视觉资源三、创建新项目四、选择训练图像五、上传和标记图像六、训练分类器七、评估分类器概率阈值 八、管理训练迭代 在本文中,你将了解如何使用Azure可视化页面创建图像分类模型。 生成模型后,可以使用新图像测试该模型…

VR Interaction Framework2.0使用

1 按键 ,比如按压下手柄的B键 if (InputBridge.Instance.BButtonDown){print("kkkkkkbbbbb456");} 2抓取某个物体,那么就在要抓取的那个物体上加一些组件,特别是Grabble Unity Events

nginx知识梳理及配置详解

软件开发全文档获取:点我获取 nginx安装 #nginx安装 yum -y install gcc pcre-devel openssl-devel #依赖包 useradd -s /sbin/nologin nginx ./configure --prefix/usr/local/nginx #指定安装目录 --usernginx #指定用户 --with-http_ss…

大语言模型概述(三):基于亚马逊云科技的研究分析与实践

上期介绍了基于亚马逊云科技的大语言模型相关研究方向,以及大语言模型的训练和构建优化。本期将介绍大语言模型训练在亚马逊云科技上的最佳实践。 大语言模型训练在亚马逊云科技上的最佳实践 本章节内容,将重点关注大语言模型在亚马逊云科技上的最佳训…

Vue解析器

解析器本质上是一个状态机。但我们也曾提到,正则表达式其实也是一个状态机。因此在编写 parser 的时候,利用正则表达式能够让我们少写不少代码。本章我们将更多地利用正则表达式来实现 HTML 解析器。另外,一个完善的 HTML 解析器远比想象的要…

【机器学习】聚类(一):原型聚类:K-means聚类

文章目录 一、实验介绍1. 算法流程2. 算法解释3. 算法特点4. 应用场景5. 注意事项 二、实验环境1. 配置虚拟环境2. 库版本介绍 三、实验内容0. 导入必要的库1. Kmeans类a. 构造函数b. 闵可夫斯基距离c. 初始化簇心d. K-means聚类e. 聚类结果可视化 2. 辅助函数3. 主函数a. 命令…

PCL 计算两点云之间的最小距离

目录 一、 算法原理二、 代码实现三、 结果展示四、 相关链接本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。 一、 算法原理 pcl::registration::CorrespondenceEstimation是确定目标和查询点集(或特征)之间对应关…

java中关键字 volatile 和 synchronized 有什么区别

java中 volatile 和 synchronized 有什么区别?

MySQL数据库主从集群搭建

快捷查看指令 ctrlf 进行搜索会直接定位到需要的知识点和命令讲解(如有不正确的地方欢迎各位小伙伴在评论区提意见,博主会及时修改) MySQL数据库主从集群搭建 主从复制,是用来建立一个和主数据库完全一样的数据库环境&#xff0c…

软著项目推荐 深度学习 python opencv 火焰检测识别 火灾检测

文章目录 0 前言1 基于YOLO的火焰检测与识别2 课题背景3 卷积神经网络3.1 卷积层3.2 池化层3.3 激活函数:3.4 全连接层3.5 使用tensorflow中keras模块实现卷积神经网络 4 YOLOV54.1 网络架构图4.2 输入端4.3 基准网络4.4 Neck网络4.5 Head输出层 5 数据集准备5.1 数…

SpectralGPT: Spectral Foundation Model 论文翻译1

遥感领域的通用大模型 2023.11.13在CVPR发表 原文地址:[2311.07113] SpectralGPT: Spectral Foundation Model (arxiv.org) 摘要 ​ 基础模型最近引起了人们的极大关注,因为它有可能以一种自我监督的方式彻底改变视觉表征学习领域。虽然大多数基础模型…

搜索引擎---项目测试

一)项目背景: 首先介绍一下项目:项目的目标是实现一个基于JAVAAPI的站内搜索引擎 java官方文档是在学习java语言中不可或缺的权威资料,相比于各种网站的Java资料,官方文档无论是语言表达还是组织方式都要更加全面和准确,因为没有人比作者更加…

《微信小程序开发从入门到实战》学习二十八

3.4 开发参与投票页面 3.4.3 使用radio单项选择器组件 逻辑层的数据已经准备好,现在实现视图层的页面展示。 投票的标题、,描述、截止日期、是否匿名等信息通过view和text组件就可以展示。比较特别的是投票选项的展示,涉及到单选还是多选&…

IO多路转接之epoll

目录 一. epoll的实现原理 二. epoll的相关接口 2.1 epoll_create -- 创建epoll模型 2.2 epoll_ctl -- 对epoll模型进行控制 2.3 epoll_wait -- 等待epoll所关注的事件就绪 2.4 epoll相关接口的使用方法 三. Epoll服务器的模拟实现 3.1 EpollServer类的声明 3.2 Epoll…

基于51单片机电子钟万年历LCD1602显示

51单片机的电子钟万年历LCD1602显示 🔴 🔵51单片机的电子钟万年历LCD1602显示🔴 🔵主要功能:🔴 🔵讲解视频🔴 🔵仿真图:🔴 🔵程序&…

Java Web——XML

1. XML概述 XML是EXtensible Markup Language的缩写,翻译过来就是可扩展标记语言。XML是一种用于存储和传输数据的语言,它使用标签来标记数据,以便于计算机处理和我们人来阅读。 “可扩展”三个字表明XML可以根据需要进行扩展和定制。这意味…

小程序中的大道理之三--对称性和耦合问题

再继续扒 继续 前一篇 的话题, 在那里, 提到了抽象, 耦合及 MVC, 现在继续探讨这些, 不过在此之前先说下第一篇里提到的对称性. 注: 以下讨论建立在前面的基础之上, 为控制篇幅起见, 这里将不再重复前面说到的部分, 如果您还没看过前两篇章, 阅读起来可能会有些困难. 这是第一…

动态规划学习——子序列问题

目录 ​编辑 一,最长定差子序列 1.题目 2,题目接口 3,解题思路及其代码 一,最长定差子序列 1.题目 给你一个整数数组 arr 和一个整数 difference,请你找出并返回 arr 中最长等差子序列的长度,该子序列…