OpenCV- 学习笔记(Python)图像处理基础

本专栏:主要记录OpenCV(Python)学习笔记

OpenCV 图像处理基础

灰度图

import cv2 #opencv读取的格式是BGR
import numpy as np
import matplotlib.pyplot as plt#Matplotlib是RGB
%matplotlib inline 
​
img=cv2.imread('cat.jpg')
img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
img_gray.shape

cat.jpg
图1:cat.jpg

cv2.imshow("img_gray", img_gray)
cv2.waitKey(0)    
cv2.destroyAllWindows() 
# [cv2.destroyAllWindows() ](https://blog.csdn.net/qq_29901385/article/details/133396468)

HSV

  • H - 色调(主波长)。
  • S - 饱和度(纯度/颜色的阴影)。
  • V值(强度)
hsv=cv2.cvtColor(img,cv2.COLOR_BGR2HSV)

cv2.imshow("hsv", hsv)
cv2.waitKey(0)    
cv2.destroyAllWindows()

图像阈值
ret, dst = cv2.threshold(src, thresh, maxval, type)
src:输入图,只能输入单通道图像,通常来说为灰度图
dst: 输出图
thresh: 阈值
maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值
type:二值化操作的类型,包含以下5种类型:

  cv2.THRESH_BINARY           超过阈值部分取maxval(最大值),否则取0
  cv2.THRESH_BINARY_INV       THRESH_BINARY的反转
  cv2.THRESH_TRUNC            大于阈值部分设为阈值,否则不变
  cv2.THRESH_TOZERO           大于阈值部分不改变,否则设为0
  cv2.THRESH_TOZERO_INV       THRESH_TOZERO的反转
ret, thresh1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
ret, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV)
ret, thresh3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC)
ret, thresh4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO)
ret, thresh5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV)

titles = ['Original Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]

for i in range(6):
    plt.subplot(2, 3, i + 1), plt.imshow(images[i], 'gray')
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

图像平滑

img = cv2.imread('lenaNoise.png')

cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

均值滤波

# 均值滤波
# 简单的平均卷积操作
blur = cv2.blur(img, (3, 3))

cv2.imshow('blur', blur)
cv2.waitKey(0)
cv2.destroyAllWindows()

方框滤波

# 方框滤波
# 基本和均值一样,可以选择归一化
box = cv2.boxFilter(img,-1,(3,3), normalize=True)  

cv2.imshow('box', box)
cv2.waitKey(0)
cv2.destroyAllWindows()

方框滤波 normalize=False

# 方框滤波
# 基本和均值一样,可以选择归一化,容易越界
box = cv2.boxFilter(img,-1,(3,3), normalize=False)  

cv2.imshow('box', box)
cv2.waitKey(0)
cv2.destroyAllWindows()

高斯滤波

# 高斯滤波
# 高斯模糊的卷积核里的数值是满足高斯分布,相当于更重视中间的
aussian = cv2.GaussianBlur(img, (5, 5), 1)  

cv2.imshow('aussian', aussian)
cv2.waitKey(0)
cv2.destroyAllWindows()

中值滤波

# 中值滤波
# 相当于用中值代替
median = cv2.medianBlur(img, 5)  # 中值滤波

cv2.imshow('median', median)
cv2.waitKey(0)
cv2.destroyAllWindows()

展示所有的

# 展示所有的
res = np.hstack((blur,aussian,median))
#print (res)
cv2.imshow('median vs average', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果:均值滤波,高斯滤波,中值滤波,方框滤波:
在这里插入图片描述

形态学-腐蚀操作

读取图像

img = cv2.imread('dige.png')

cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

腐蚀操作

kernel = np.ones((3,3),np.uint8) 
erosion = cv2.erode(img,kernel,iterations = 1)

cv2.imshow('erosion', erosion)
cv2.waitKey(0)
cv2.destroyAllWindows()

设置不同的参数对比

pie = cv2.imread('pie.png')

cv2.imshow('pie', pie)
cv2.waitKey(0)
cv2.destroyAllWindows()

kernel = np.ones((30,30),np.uint8) 
erosion_1 = cv2.erode(pie,kernel,iterations = 1)
erosion_2 = cv2.erode(pie,kernel,iterations = 2)
erosion_3 = cv2.erode(pie,kernel,iterations = 3)
res = np.hstack((erosion_1,erosion_2,erosion_3))
cv2.imshow('res', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果显示: pie,erosion_1,erosion_2,erosion_3
在这里插入图片描述

形态学-膨胀操作

img = cv2.imread('dige.png')
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
kernel = np.ones((3,3),np.uint8) 
dige_erosion = cv2.erode(img,kernel,iterations = 1)

cv2.imshow('erosion', erosion)
cv2.waitKey(0)
cv2.destroyAllWindows()
kernel = np.ones((3,3),np.uint8) 
dige_dilate = cv2.dilate(dige_erosion,kernel,iterations = 1)

cv2.imshow('dilate', dige_dilate)
cv2.waitKey(0)
cv2.destroyAllWindows()
pie = cv2.imread('pie.png')

kernel = np.ones((30,30),np.uint8) 
dilate_1 = cv2.dilate(pie,kernel,iterations = 1)
dilate_2 = cv2.dilate(pie,kernel,iterations = 2)
dilate_3 = cv2.dilate(pie,kernel,iterations = 3)
res = np.hstack((dilate_1,dilate_2,dilate_3))
cv2.imshow('res', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果显示:dilate_1,dilate_2,dilate_3
在这里插入图片描述

开运算与闭运算

先腐蚀,再膨胀

# 开:先腐蚀,再膨胀
img = cv2.imread('dige.png')

kernel = np.ones((5,5),np.uint8) 
opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)

cv2.imshow('opening', opening)
cv2.waitKey(0)
cv2.destroyAllWindows()

先膨胀,再腐蚀

# 闭:先膨胀,再腐蚀
img = cv2.imread('dige.png')

kernel = np.ones((5,5),np.uint8) 
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)

cv2.imshow('closing', closing)
cv2.waitKey(0)
cv2.destroyAllWindows()

梯度运算

梯度=膨胀-腐蚀

# 梯度=膨胀-腐蚀
pie = cv2.imread('pie.png')
kernel = np.ones((7,7),np.uint8) 
dilate = cv2.dilate(pie,kernel,iterations = 5)
erosion = cv2.erode(pie,kernel,iterations = 5)

res = np.hstack((dilate,erosion))

cv2.imshow('res', res)
cv2.waitKey(0)
cv2.destroyAllWindows()
gradient = cv2.morphologyEx(pie, cv2.MORPH_GRADIENT, kernel)

cv2.imshow('gradient', gradient)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果显示:dilate,erosion,gradient
在这里插入图片描述

礼帽与黑帽

  • 礼帽 = 原始输入-开运算结果
  • 黑帽 = 闭运算-原始输入
#礼帽
img = cv2.imread('dige.png')
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)
cv2.imshow('tophat', tophat)
cv2.waitKey(0)
cv2.destroyAllWindows()
#黑帽
img = cv2.imread('dige.png')
blackhat  = cv2.morphologyEx(img,cv2.MORPH_BLACKHAT, kernel)
cv2.imshow('blackhat ', blackhat )
cv2.waitKey(0)
cv2.destroyAllWindows()

结果显示:礼帽与黑帽
在这里插入图片描述

图像梯度-Sobel算子

img = cv2.imread('pie.png',cv2.IMREAD_GRAYSCALE)
cv2.imshow("img",img)
cv2.waitKey()
cv2.destroyAllWindows()

dst = cv2.Sobel(src, ddepth, dx, dy, ksize)

  • ddepth:图像的深度
  • dx和dy分别表示水平和竖直方向
  • ksize是Sobel算子的大小
def cv_show(img,name):
    cv2.imshow(name,img)
    cv2.waitKey()
    cv2.destroyAllWindows()
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
cv_show(sobelx,'sobelx')

白到黑是正数,黑到白就是负数了,所有的负数会被截断成0,所以要取绝对值

sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)
cv_show(sobelx,'sobelx')
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobely = cv2.convertScaleAbs(sobely)  
cv_show(sobely,'sobely')

分别计算x和y,再求和

sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0)
cv_show(sobelxy,'sobelxy')

不建议直接计算

sobelxy = cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3)
sobelxy = cv2.convertScaleAbs(sobelxy) 
cv_show(sobelxy,'sobelxy')
img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)
cv_show(img,'img')
img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobely = cv2.convertScaleAbs(sobely)
sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0)
cv_show(sobelxy,'sobelxy')

img = cv2.imread(‘lena.jpg’,cv2.IMREAD_GRAYSCALE)
sobelxy=cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3)
sobelxy = cv2.convertScaleAbs(sobelxy)
cv_show(sobelxy,‘sobelxy’)
结果显示:
在这里插入图片描述

图像梯度-Scharr算子 & 图像梯度-laplacian算子

   #不同算子的差异
   img = cv2.imread('MyCode/OpenCV/images/lena.jpg',cv2.IMREAD_GRAYSCALE)

   # 图像梯度-Sobel算子
   sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
   sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
   sobelx = cv2.convertScaleAbs(sobelx)   
   sobely = cv2.convertScaleAbs(sobely)  
   sobelxy =  cv2.addWeighted(sobelx,0.5,sobely,0.5,0)  
   # 图像梯度-Scharr算子
   scharrx = cv2.Scharr(img,cv2.CV_64F,1,0)
   scharry = cv2.Scharr(img,cv2.CV_64F,0,1)
   scharrx = cv2.convertScaleAbs(scharrx)   
   scharry = cv2.convertScaleAbs(scharry)  
   scharrxy =  cv2.addWeighted(scharrx,0.5,scharry,0.5,0) 

   # 图像梯度-laplacian算子
   laplacian = cv2.Laplacian(img,cv2.CV_64F)
   laplacian = cv2.convertScaleAbs(laplacian)   

   res = np.hstack((sobelxy,scharrxy,laplacian))
   cv2.imshow('res', res)
   cv2.waitKey(0)
   cv2.destroyAllWindows()

结果显示:图像梯度-Sobel算子,图像梯度-Scharr算子,图像梯度-laplacian算子
在这里插入图片描述

Canny边缘检测

  • 使用高斯滤波器,以平滑图像,滤除噪声。
  • 计算图像中每个像素点的梯度强度和方向。
  • 应用非极大值(Non-Maximum Suppression)抑制,以消除边缘检测带来的杂散响应。
  • 应用双阈值(Double-Threshold)检测来确定真实的和潜在的边缘。
  • 通过抑制孤立的弱边缘最终完成边缘检测。
img=cv2.imread("lena.jpg",cv2.IMREAD_GRAYSCALE)

v1=cv2.Canny(img,80,150)
v2=cv2.Canny(img,50,100)

res = np.hstack((v1,v2))
cv_show(res,'res')
img=cv2.imread("car.png",cv2.IMREAD_GRAYSCALE)

v1=cv2.Canny(img,120,250)
v2=cv2.Canny(img,50,100)

res = np.hstack((v1,v2))
cv_show(res,'res')

在这里插入图片描述

图像金字塔

  • 高斯金字塔
  • 拉普拉斯金字塔
img=cv2.imread("AM.png")
cv_show(img,'img')
print (img.shape)

高斯金字塔:向上采样方法(放大)

up=cv2.pyrUp(img)
cv_show(up,'up')
print (up.shape)

高斯金字塔:向下采样方法(缩小)

down=cv2.pyrDown(img)
cv_show(down,'down')
print (down.shape)
up2=cv2.pyrUp(up)
cv_show(up2,'up2')
print (up2.shape)
up=cv2.pyrUp(img)
up_down=cv2.pyrDown(up)
cv_show(up_down,'up_down')
cv_show(np.hstack((img,up_down)),'up_down')
up=cv2.pyrUp(img)
up_down=cv2.pyrDown(up)
cv_show(img-up_down,'img-up_down')

拉普拉斯金字塔¶

down=cv2.pyrDown(img)
down_up=cv2.pyrUp(down)
l_1=img-down_up
cv_show(l_1,'l_1')

图像轮廓

cv2.findContours(img,mode,method) mode:轮廓检索模式

  • RETR_EXTERNAL :只检索最外面的轮廓;
  • RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中;
  • RETR_CCOMP:检索所有的轮廓,并将他们组织为两层:顶层是各部分的外部边界,第二层是空洞的边界;
  • RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次;

method:轮廓逼近方法

  • CHAIN_APPROX_NONE:以Freeman链码的方式输出轮廓,所有其他方法输出多边形(顶点的序列)。
  • CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分。

为了更高的准确率,使用二值图像。

img = cv2.imread('contours.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
cv_show(thresh,'thresh')
binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)

绘制轮廓

cv_show(img,'img')
#传入绘制图像,轮廓,轮廓索引,颜色模式,线条厚度
# 注意需要copy,要不原图会变。。。
draw_img = img.copy()
res = cv2.drawContours(draw_img, contours, -1, (0, 0, 255), 2)
cv_show(res,'res')
draw_img = img.copy()
res = cv2.drawContours(draw_img, contours, 0, (0, 0, 255), 2)
cv_show(res,'res')

轮廓特征

cnt = contours[0]
#面积
cv2.contourArea(cnt)
#周长,True表示闭合的
cv2.arcLength(cnt,True)

轮廓近似

img = cv2.imread('contours2.png')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]

draw_img = img.copy()
res = cv2.drawContours(draw_img, [cnt], -1, (0, 0, 255), 2)
cv_show(res,'res')
epsilon = 0.15*cv2.arcLength(cnt,True) 
approx = cv2.approxPolyDP(cnt,epsilon,True)

draw_img = img.copy()
res = cv2.drawContours(draw_img, [approx], -1, (0, 0, 255), 2)
cv_show(res,'res')

边界矩形

img = cv2.imread('contours.png')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]

x,y,w,h = cv2.boundingRect(cnt)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv_show(img,'img')
area = cv2.contourArea(cnt)
x, y, w, h = cv2.boundingRect(cnt)
rect_area = w * h
extent = float(area) / rect_area
print ('轮廓面积与边界矩形比',extent)

外接圆

(x,y),radius = cv2.minEnclosingCircle(cnt) 
center = (int(x),int(y)) 
radius = int(radius) 
img = cv2.circle(img,center,radius,(0,255,0),2)
cv_show(img,'img')

傅里叶变换

我们生活在时间的世界中,早上7:00起来吃早饭,8:00去挤地铁,9:00开始上班。。。以时间为参照就是时域分析。

但是在频域中一切都是静止的!

https://zhuanlan.zhihu.com/p/19763358

傅里叶变换的作用

  • 高频:变化剧烈的灰度分量,例如边界
  • 低频:变化缓慢的灰度分量,例如一片大海

滤波

  • 低通滤波器:只保留低频,会使得图像模糊
  • 高通滤波器:只保留高频,会使得图像细节增强

opencv中主要就是cv2.dft()和cv2.idft(),输入图像需要先转换成np.float32
格式,得到的结果中频率为0的部分会在左上角,通常要转换到中心位置,通过shift变换

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('lena.jpg',0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))

plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()
import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('lena.jpg',0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2)     # 中心位置

# 低通滤波
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1

# IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])

plt.show()                

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/186194.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux技能篇-非交互式修改密码

今天的文章没有格式,简单分享一个小技能,就是标题所说–非交互式修改密码。 一、普通方式修改用户密码 最普通的修改密码的命令就是passwd命令 [rootlocalhost ~]# passwd root Changing password for user root. New password: Retype new password:…

基于孔雀算法优化概率神经网络PNN的分类预测 - 附代码

基于孔雀算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于孔雀算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于孔雀优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神经网络的光滑…

《C++PrimePlus》第9章 内存模型和名称空间

9.1 单独编译 Visual Studio中新建头文件和源代码 通过解决方案资源管理器,如图所示: 分成三部分的程序(直角坐标转换为极坐标) 头文件coordin.h #ifndef __COORDIN_H__ // 如果没有被定义过 #define __COORDIN_H__struct pola…

两巨头Facebook 和 GitHub 联手推出 Atom-IDE

9月13日,GitHub 宣布与 Facebook 合作推出了 Atom-IDE —— 它包括一系列将类 IDE 功能带到 Atom 的可选工具包。初次发布的版本包括更智能、感知上下文的自动完成;导航功能,如大纲视图和定义跳转(outline view and goto-definition)&#xf…

[UE4][C++]基于UUserWidget的一种序列图播放方法

最近在做一个大项目,鸽了几个月了....... 一、传统方法Flipbook 这种方法适合序列图较少的情况下、可以一个一个添加进来然后调整顺序。蓝图也比较友好可以直接设置很多属性和功能。这里简单了解一下即可,想要深入了解的同学可以自行搜索。 1.1创建Fli…

用 Addon 增强 Node.js 和 Electron 应用的原生能力

前言 Node.js Addon 是 Node.js 中为 JavaScript 环境提供 C/C 交互能力的机制。其形态十分类似 Java 的 JNI,都是通过提供一套 C/C SDK,用于在 C/C 中创建函数方法、进行数据转换,以便 JavaScript / Java 等语言进行调用。这样编写的代码通常…

大模型推理加速框架vllm部署的实战方案

大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法…

【教学类-06-07】20231124 (55格版)X-X之间的加法、减法、加减混合题

背景需求 在大四班里,预测试55格“5以内、10以内、20以内的加法题、减法题、加减混合题”的“实用性”。 由于只打印一份20以内加法减法混合题。 “这套20以内的加减法最难”,我询问谁会做(摸底幼儿的水平) 有两位男孩举手想挑…

python——第十二天

内置模块或者其他模块学习方式: dir help os模块负责程序与操作系统的交互,提供了访问操作系统底层的接口;即os模块提供了非常丰富的方法用来处理文件和目录。 os: os.path 遍历C盘代码 import os from os import path def …

1|1111

1、指定在每天凌晨4:00将该时间点之前的系统日志信息(/var/log/messages )备份到目录下/backup,备份后日志文件名显示格式logfileYY-MM-DD-HH-MM 2、配置ssh免密登陆:客户端主机通过redhat用户基于秘钥验证方式进行远…

手写一个简单版的Spring

1. 创建一个工程及初始化 创建Java工程 创建对应的包 config:为配置类包 service:定义的将要被自己写的Spring容器管理的组件bean spring:里面定义自己写的Spring的类文件,包含子包anno注解包 test:定义测试类 2.…

springboot+vue基本微信小程序的外卖点餐平台系统

项目介绍 餐饮行业是一个传统的行业。根据当前发展现状,网络信息时代的全面普及,餐饮行业也在发生着变化,单就点餐这一方面,利用手机点单正在逐步进入人们的生活。传统的点餐方式,不仅会耗费大量的人力、时间&#xf…

C++入门第九篇---Stack和Queue模拟实现,优先级队列

前言: 我们已经掌握了string vector list三种最基本的数据容器模板,而对于数据结构的内容来说,其余的数据结构容器基本都是这三种容器的延申和扩展,在他们的基础上扩展出更多功能和用法,今天我们便来模拟实现一下C库中…

【OpenSTL】方便好用的时空预测开源库

OpenSTL:方便好用的时空预测开源库 时空预测学习是一种学习范式,它使得模型能够通过在无监督的情况下从给定的过去帧预测未来帧,从而学习空间和时间的模式。尽管近年来取得了显著的进展,但由于不同的设置、复杂的实现和难以复现性…

Go语言的学习笔记2——Go语言源文件的结构布局

用一个只有main函数的go文件来简单说一下Go语言的源文件结构布局,主要分为包名、引入的包和具体函数。下边是main.go示例代码: package mainimport "fmt"func main() { fmt.Println("hello, world") }package main就是表明这个文件…

AlDente Pro v1.22.2(mac电池最大充电限制工具)

AlDente Pro是一款适用于Mac操作系统的小工具,可以帮助您限制电池充电量以延长电池寿命。通常情况下,电池在充满的状态下会继续接受电源充电,这可能会导致电池寿命缩短。使用AlDente Pro,您可以设置电池只充到特定的充电水平&…

高清动态壁纸软件Live Wallpaper Themes 4K mac中文版功能

Live Wallpaper & Themes 4K mac是一款提供各种高清动态壁纸和主题的应用程序。该应用程序提供了大量的动态壁纸和主题,包括自然、动物、城市、抽象等各种类别,可以满足用户不同的需求。除了壁纸和主题之外,该应用程序还提供了许多其他功…

拦截器详解

一、概述 什么是拦截器? 是一种动态拦截方法调用的机制,类似于过滤器。Spring框架中提供的,用来动态拦截控制方法的执行。 到底是干啥用的? 拦截请求用的,在指定的方法调用前后,执行在拦截器中编写的程序 …

苹果App加急审核

苹果App加急审核 (注意加急的次数,有的说一年能加急两次,有的说不止两次。遇到紧急问题了就用,非紧急 等一等也行) 1.登录苹果账号 Sign In - Apple ( https://developer.apple.com/contact/app-store/?…

力扣每日一道系列 --- LeetCode 206. 反转链表

📷 江池俊: 个人主页 🔥个人专栏: ✅数据结构探索 ✅LeetCode每日一道 🌅 有航道的人,再渺小也不会迷途。 LeetCode 206. 反转链表 思路一:头插 初始化两个指针,cur 和 newhead。…