基于孔雀算法优化概率神经网络PNN的分类预测 - 附代码

基于孔雀算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于孔雀算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于孔雀优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用孔雀算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于孔雀优化的PNN网络

孔雀算法原理请参考:https://blog.csdn.net/u011835903/article/details/127779440

利用孔雀算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

孔雀参数设置如下:

%% 孔雀参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,孔雀-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/186191.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

《C++PrimePlus》第9章 内存模型和名称空间

9.1 单独编译 Visual Studio中新建头文件和源代码 通过解决方案资源管理器,如图所示: 分成三部分的程序(直角坐标转换为极坐标) 头文件coordin.h #ifndef __COORDIN_H__ // 如果没有被定义过 #define __COORDIN_H__struct pola…

两巨头Facebook 和 GitHub 联手推出 Atom-IDE

9月13日,GitHub 宣布与 Facebook 合作推出了 Atom-IDE —— 它包括一系列将类 IDE 功能带到 Atom 的可选工具包。初次发布的版本包括更智能、感知上下文的自动完成;导航功能,如大纲视图和定义跳转(outline view and goto-definition)&#xf…

[UE4][C++]基于UUserWidget的一种序列图播放方法

最近在做一个大项目,鸽了几个月了....... 一、传统方法Flipbook 这种方法适合序列图较少的情况下、可以一个一个添加进来然后调整顺序。蓝图也比较友好可以直接设置很多属性和功能。这里简单了解一下即可,想要深入了解的同学可以自行搜索。 1.1创建Fli…

用 Addon 增强 Node.js 和 Electron 应用的原生能力

前言 Node.js Addon 是 Node.js 中为 JavaScript 环境提供 C/C 交互能力的机制。其形态十分类似 Java 的 JNI,都是通过提供一套 C/C SDK,用于在 C/C 中创建函数方法、进行数据转换,以便 JavaScript / Java 等语言进行调用。这样编写的代码通常…

大模型推理加速框架vllm部署的实战方案

大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法…

【教学类-06-07】20231124 (55格版)X-X之间的加法、减法、加减混合题

背景需求 在大四班里,预测试55格“5以内、10以内、20以内的加法题、减法题、加减混合题”的“实用性”。 由于只打印一份20以内加法减法混合题。 “这套20以内的加减法最难”,我询问谁会做(摸底幼儿的水平) 有两位男孩举手想挑…

python——第十二天

内置模块或者其他模块学习方式: dir help os模块负责程序与操作系统的交互,提供了访问操作系统底层的接口;即os模块提供了非常丰富的方法用来处理文件和目录。 os: os.path 遍历C盘代码 import os from os import path def …

1|1111

1、指定在每天凌晨4:00将该时间点之前的系统日志信息(/var/log/messages )备份到目录下/backup,备份后日志文件名显示格式logfileYY-MM-DD-HH-MM 2、配置ssh免密登陆:客户端主机通过redhat用户基于秘钥验证方式进行远…

手写一个简单版的Spring

1. 创建一个工程及初始化 创建Java工程 创建对应的包 config:为配置类包 service:定义的将要被自己写的Spring容器管理的组件bean spring:里面定义自己写的Spring的类文件,包含子包anno注解包 test:定义测试类 2.…

springboot+vue基本微信小程序的外卖点餐平台系统

项目介绍 餐饮行业是一个传统的行业。根据当前发展现状,网络信息时代的全面普及,餐饮行业也在发生着变化,单就点餐这一方面,利用手机点单正在逐步进入人们的生活。传统的点餐方式,不仅会耗费大量的人力、时间&#xf…

C++入门第九篇---Stack和Queue模拟实现,优先级队列

前言: 我们已经掌握了string vector list三种最基本的数据容器模板,而对于数据结构的内容来说,其余的数据结构容器基本都是这三种容器的延申和扩展,在他们的基础上扩展出更多功能和用法,今天我们便来模拟实现一下C库中…

【OpenSTL】方便好用的时空预测开源库

OpenSTL:方便好用的时空预测开源库 时空预测学习是一种学习范式,它使得模型能够通过在无监督的情况下从给定的过去帧预测未来帧,从而学习空间和时间的模式。尽管近年来取得了显著的进展,但由于不同的设置、复杂的实现和难以复现性…

Go语言的学习笔记2——Go语言源文件的结构布局

用一个只有main函数的go文件来简单说一下Go语言的源文件结构布局,主要分为包名、引入的包和具体函数。下边是main.go示例代码: package mainimport "fmt"func main() { fmt.Println("hello, world") }package main就是表明这个文件…

AlDente Pro v1.22.2(mac电池最大充电限制工具)

AlDente Pro是一款适用于Mac操作系统的小工具,可以帮助您限制电池充电量以延长电池寿命。通常情况下,电池在充满的状态下会继续接受电源充电,这可能会导致电池寿命缩短。使用AlDente Pro,您可以设置电池只充到特定的充电水平&…

高清动态壁纸软件Live Wallpaper Themes 4K mac中文版功能

Live Wallpaper & Themes 4K mac是一款提供各种高清动态壁纸和主题的应用程序。该应用程序提供了大量的动态壁纸和主题,包括自然、动物、城市、抽象等各种类别,可以满足用户不同的需求。除了壁纸和主题之外,该应用程序还提供了许多其他功…

拦截器详解

一、概述 什么是拦截器? 是一种动态拦截方法调用的机制,类似于过滤器。Spring框架中提供的,用来动态拦截控制方法的执行。 到底是干啥用的? 拦截请求用的,在指定的方法调用前后,执行在拦截器中编写的程序 …

苹果App加急审核

苹果App加急审核 (注意加急的次数,有的说一年能加急两次,有的说不止两次。遇到紧急问题了就用,非紧急 等一等也行) 1.登录苹果账号 Sign In - Apple ( https://developer.apple.com/contact/app-store/?…

力扣每日一道系列 --- LeetCode 206. 反转链表

📷 江池俊: 个人主页 🔥个人专栏: ✅数据结构探索 ✅LeetCode每日一道 🌅 有航道的人,再渺小也不会迷途。 LeetCode 206. 反转链表 思路一:头插 初始化两个指针,cur 和 newhead。…

单片机、ARM、嵌入式开发、Android 底层开发有什么关系?

单片机、ARM、嵌入式开发、Android 底层开发有什么关系? 从我目前的见识来看: 单片机是个系统(比如:51、AVR、PLC...),其中包含了去除了输入输出之外的运算器、控制器、存储器,我们用程序可以非…

CANdelaStudio 使用教程3 新建Service

文章目录 简述Service 的相关配置项1、Protocol Services2、Diagnostic Class Templates3、Supported Diagnostic Classes 新建 Service1、新建 Service2、新建类并添加服务3、 选择支持的服务4、Diagnostic Class Templates:Identification 编辑 Service1、新增服务…