数据结构:二叉查找树,平衡二叉树AVLTree,红黑树RBTree,平衡多路查找数B-Tree,B+Tree

二叉查找树

二叉树具有以下性质:左子树的键值小于根的键值,右子树的键值大于根的键值。

在这里插入图片描述

对该二叉树的节点进行查找发现深度为1的节点的查找次数为1,深度为2的查找次数为2,深度为n的节点的查找次数为n,因此其平均查找次数为 (1+2+2+3+3+3) / 6 = 2.3次。

平衡二叉树AVLT

为了提高二叉树的查找效率,显然二叉树层级越少越好,于是就有了平衡二叉树。它在符合二叉查找树的条件下,还满足任何节点的两个子树的高度最大差为1,如下图所示:

在这里插入图片描述

AVL二叉树的高度为:
l o g 2 n log_2n log2n
如果在AVL树中进行插入或删除节点,可能导致AVL树失去平衡,这种失去平衡的二叉树可以概括为四种姿态:LL(左左)、RR(右右)、LR(左右)、RL(右左)。它们的示意图如下:

在这里插入图片描述

AVL树失去平衡之后,可以通过旋转使其恢复平衡。下面分别介绍四种失去平衡的情况下对应的旋转方法。

LL的旋转:

  1. 将根节点的左孩子作为新根节点。
  2. 将新根节点的右孩子作为原根节点的左孩子。
  3. 将原根节点作为新根节点的右孩子。

在这里插入图片描述

RR的旋转:

  1. 将根节点的右孩子作为新根节点。
  2. 将新根节点的左孩子作为原根节点的右孩子。
  3. 将原根节点作为新根节点的左孩子。

在这里插入图片描述

LR的旋转:

  1. 围绕根节点的左孩子进行RR旋转。
  2. 围绕根节点进行LL旋转。

在这里插入图片描述

RL的旋转:

  1. 围绕根节点的右孩子进行LL旋转。
  2. 围绕根节点进行RR旋转。

在这里插入图片描述

红黑树 RBT

因为二叉搜索树有可能会出现极端的情况,就是只有一侧有数据,那这样的话就会降级为链表。后来出现了平衡二叉树,但是由于强制平衡所导致付出的代价比较高昂,所以红黑树出现了。

红黑树(Red Black Tree) 的实现是基于二叉查找树的,对于含有n个节点的二叉查找树的最坏的情况是这n个节点形成一条单链,此时二叉查找树的高度为n,时间复杂度为O(n)。为了维持AVL的高度,就需要采取一些措施在不影响二叉查找树的性质下改变二叉查找树的结构,使之平衡。红黑树就是这样一种二叉查找树,即自平衡二叉查找树,也就是红黑树。

红黑树是每个节点都带有颜色属性的二叉查找树,颜色为红色或黑色。

  1. 根节点是黑色
  2. 所有叶子都是黑色,叶子是NUIL节点。
  3. 红色节点的两个子节点都是黑色
  4. 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点,这一点就要求,如果一个分支比另一个分支多了一层,那么就必须多一个红色节点。

在这里插入图片描述

当对红黑树进行插入或删除时,就有可能破坏红黑树的性质,这时需要通过变色、左旋与右旋操作平衡红黑树。变色操作很简单,红变黑,黑变红;左旋可以看成是在某个区域内沿着某个节点X逆时针旋转,右旋是顺时针。然后X就成了此区域内的最高节点。

在这里插入图片描述

红黑树并没有像AVL那样对树的平衡有那么严格的要求,它追求的是大致平衡,因此左旋右旋操作没那么频繁。它的高度最多是
2 ∗ l o g 2 ( n + 1 ) 2 * log_2(n+1) 2log2(n+1)
因此时间复杂度也是这个,其查找效率虽然不如AVL,但是还是处于同一量级的。

AVL适合查多改少的场景;红黑树相较于AVL,更适合频繁插入或删除的场景。

在插入节点时,先将其设置为红色(满足特性4),然后特性1和2好说,所以需要重点考虑的是特性3,然后再做一些旋转和改色。

在整个插入旋转的过程中,我们一定要确保高度最低原则,即把红色删除后剩下的高度越低越好,那么在调整的时候能给红色就给红色。

现在新节点为红色,来考虑特性3,如果父节点是黑色,那么无需处理,如果父节点为红色,则需要分情况来处理。此处我们抛开 NULL 节点。并且假设父节点是祖父节点的左节点,实际上父节点是祖父节点的右节点的情况是类似的。

1、新节点为左节点,叔叔节点为红色

2、新节点为左节点,此时必然不存在叔叔节点

3、新节点为右节点,叔叔节点为红色

4、新节点为右节点,此时必然不存在叔叔节点

情况3左旋变成了情况1,情况4通过左旋变成了情况2,因此只需要讨论1,2。

情况1:将祖父节点变为红色,父节点和叔叔节点变为黑色,新增节点是红色,如果祖父节点是根节点那么根节点应该是黑色,如果祖父节点还有父节点,则需要将祖父节点看成输入节点递归向上调整。

情况2:父节点变黑,祖父节点变红,沿父节点右旋。

在这里插入图片描述

平衡多路查找数B-Tree

B-Tree是为磁盘等外存储设备设计的一种平衡查找树。因此在讲B-Tree之前先了解下磁盘的相关知识。

操作系统从磁盘读取数据到内存时是以磁盘(block)为基本单位的(在许多操作系统中,块的大小通常为4k),位于同一个磁盘块中的数据会被一次性读取出来,而不是需要什么取什么。

InnoDB存储引擎中有(Page)的概念,页是其磁盘管理的最小单位。InnoDB存储引擎中默认每个页的大小为16KB,可通过参数innodb_page_size将页的大小设置为4K、8K、16K,在MySQL中可通过如下命令查看页的大小:

mysql> show variables like 'innodb_page_size';

而操作系统一个磁盘块的存储空间往往没有这么大,因此InnoDB每次为一个节点申请磁盘空间时都会是若干地址连续磁盘块来达到页的大小16KB。而且InnoDB在把磁盘数据读入到内存时也是以页为基本单位,在查询数据时如果一个页中的每条数据都能有助于定位数据记录的位置,这将会减少磁盘I/O次数,提高查询效率。

B-Tree结构的数据可以让系统高效的找到数据所在的磁盘块。为了描述B-Tree,首先定义一条记录为一个二元组[key, data] ,key为记录的键值,对应表中的主键值,data为一行记录中除主键外的数据。对于不同的记录,key值互不相同。

一棵 m 阶的B-Tree有如下特性

  1. 每个节点最多有 m 个孩子。
  2. 除了根节点和叶子节点外,其它每个节点最少有Ceil(m/2)个孩子。
  3. 若根节点不是叶子节点,则至少有2个孩子 。
  4. 所有叶子节点都在同一层,且不包含其它关键字信息 。
  5. 每个非终端节点包含 n 个关键字信息(P0, P1, …Pn, k1,…kn)
  6. 关键字的个数 n 满足:ceil(m/2)-1 <= n <= m-1
  7. ki(i=1,…n)为关键字,且关键字升序排序。
  8. Pi(i=1,…n)为指向子树根节点的指针。P(i-1)指向的子树的所有节点关键字均小于ki,但都大于k(i-1)

B-Tree中的每个节点根据实际情况可以包含大量的关键字信息和分支,如下图所示为一个 3 阶的B-Tree:

在这里插入图片描述

每个节点为一个页,一个节点上有两个升序排序的关键字和三个指向子节点的指针,指针存储的是子节点所在磁盘块的地址。两个关键词划分成的三个范围域对应三个指针指向的子树的数据的范围域。以根节点为例,关键字为17和35,P1指针指向的子树的数据范围为小于17,P2指针指向的子树的数据范围为17~35,P3指针指向的子树的数据范围为大于35。

模拟查找关键字29的过程:

  1. 根据根节点找到磁盘块1,读入内存。【磁盘I/O操作第1次】
  2. 比较关键字29在区间(17,35),找到磁盘块1的指针P2。
  3. 根据P2指针找到磁盘块3,读入内存。【磁盘I/O操作第2次】
  4. 比较关键字29在区间(26,30),找到磁盘块3的指针P2。
  5. 根据P2指针找到磁盘块8,读入内存。【磁盘I/O操作第3次】
  6. 在磁盘块8中的关键字列表中找到关键字29。

分析上面过程,发现需要3次磁盘I/O操作,和3次内存查找操作。由于内存中的关键字是一个有序表结构,可以利用二分法查找提高效率。而3次磁盘I/O操作是影响整个B-Tree查找效率的决定因素。B-Tree相对于AVLTree缩减了节点层数,使每次磁盘I/O取到内存的数据都发挥了作用,从而提高了查询效率。

B+Tree

B+Tree是在B-Tree基础上的一种优化,使其更适合实现外存储索引结构,InnoDB存储引擎就是用B+Tree实现其索引结构。

从上一节中的B-Tree结构图中可以看到每个节点中不仅包含数据的key值,还有data值。而每一个页的存储空间是有限的,如果data数据较大时将会导致每个节点(即一个页)能存储的key的数量很小,当存储的数据量很大时同样会导致B-Tree的深度较大,增大查询时的磁盘I/O次数,进而影响查询效率。在B+Tree中,所有数据记录节点都是按照键值大小顺序存放在同一层的叶子节点上,而非叶子节点上只存储key值信息,这样可以大大加大每个节点存储的key值数量,降低B+Tree的高度。

B+Tree相对于B-Tree有几点不同:

  1. 非叶子节点只存储键值信息。
  2. 所有叶子节点之间都有一个链指针。
  3. 数据记录都存放在叶子节点中。

将上一节中的B-Tree优化,由于B+Tree的非叶子节点只存储键值信息,假设每个磁盘块能存储4个键值及指针信息,则变成B+Tree后其结构如下图所示:

在这里插入图片描述

通常在B+Tree上有两个头指针,一个指向根节点,另一个指向关键字最小的叶子节点,而且所有叶子节点(即数据节点)之间是一种链式环结构。因此可以对B+Tree进行两种查找运算:一种是对于主键的范围查找和分页查找,另一种是从根节点开始,进行随机查找。

可能上面例子中只有22条数据记录,看不出B+Tree的优点,下面做一个推算:

InnoDB存储引擎中页的大小为16KB,一般表的主键类型为INT(占用4个字节)或BIGINT(占用8个字节),指针类型也一般为4或8个字节,也就是说一个页(B+Tree中的一个节点)中大概存储16KB/(8B+8B)=1K个键值(因为是估值,为方便计算,这里的K取值为10^3)。也就是说一个深度为 3 的B+Tree索引可以维护10^3 * 10^3 * 10^3 = 10亿 条记录。

实际情况中每个节点可能不能填充满,因此在数据库中,B+Tree的高度一般都在24层。mysql的InnoDB存储引擎在设计时是将根节点常驻内存的,也就是说查找某一键值的行记录时最多只需要13次磁盘I/O操作。

数据库中的B+Tree索引可以分为聚集索引(clustered index)辅助索引(secondary index)。上面的B+Tree示例图在数据库中的实现即为聚集索引,聚集索引的B+Tree中的叶子节点存放的是整张表的行记录数据。辅助索引与聚集索引的区别在于辅助索引的叶子节点并不包含行记录的全部数据,而是存储相应行数据的聚集索引键,即主键值。当通过辅助索引来查询数据时,InnoDB存储引擎会遍历辅助索引找到主键,然后再通过主键在聚集索引中找到完整的行记录数据。mysql数据表都有一个 Primary Key,聚集索引就是基于 Primary Key 创建的,另外你还可以创建其他的索引,就是辅助索引。

InnoDB表中如果不存在 Primary Key ,则MySQL自动生成一个隐含字段作为主键,这个字段长度为6个字节,类型为长整形。

MyISAM 引擎使用的也是B+Tree,但是它的叶子节点上存储的data是具体记录的地址,因此被称为非聚集索引

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/184837.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MacM1(ARM)安装Protocol Buffers

MacM1(ARM)安装Protocol Buffers 本文目录 MacM1(ARM)安装Protocol Buffers3.21之前版本安装使用configure3.22之后版本安装使用cmake使用编译后的版本 protobuf下载地址&#xff1a;https://github.com/protocolbuffers/protobuf/releases 在运行./autogen.sh或./configure命…

从 RBAC 到 NGAC ,企业如何实现自动化权限管理?

随着各领域加快向数字化、移动化、互联网化的发展&#xff0c;企业信息环境变得庞大复杂&#xff0c;身份和权限管理面临巨大的挑战。为了满足身份管理法规要求并管理风险&#xff0c;企业必须清点、分析和管理用户的访问权限。如今&#xff0c;越来越多的员工采用移动设备进行…

【网络奇幻之旅】那年我与区块链技术的邂逅

&#x1f33a;个人主页&#xff1a;Dawn黎明开始 &#x1f380;系列专栏&#xff1a;网络奇幻之旅 ⭐每日一句&#xff1a;追光的人&#xff0c;终会光芒万丈 &#x1f4e2;欢迎大家&#xff1a;关注&#x1f50d;点赞&#x1f44d;评论&#x1f4dd;收藏⭐️ 文章目录 &#…

每日OJ题_算法_双指针_力扣11. 盛最多水的容器

力扣11. 盛最多水的容器 11. 盛最多水的容器 - 力扣&#xff08;LeetCode&#xff09; 难度 中等 给定一个长度为 n 的整数数组 height 。有 n 条垂线&#xff0c;第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线&#xff0c;使得它们与 x 轴共同构成…

锂电池搅拌机常见故障及预测性维护解决方案

锂电池搅拌机作为锂电池生产过程中的关键设备&#xff0c;负责混合和搅拌材料&#xff0c;对生产效率和产品质量具有重要影响。但由于长时间运行和复杂工作环境&#xff0c;锂电池搅拌机常常面临各种故障和维护需求。传统的故障修复维护方式往往是被动的&#xff0c;不能及时预…

口袋参谋:如何避免宝贝被降权?这招屡试屡爽!

​至少99.99999%的店铺在今年都被降权过&#xff01;各家店铺被降权的原因&#xff0c;无非就一个原因&#xff0c;那就是s单&#xff01; s单的风险也就两种&#xff0c;一是操作问题&#xff0c;二是账号问题。 操作问题被降权&#xff0c;这个大家都心知肚明&#xff0c;s…

根据商品链接获取拼多多商品详情数据接口|拼多多商品详情价格数据接口|拼多多API接口

拼多多&#xff0c;作为中国最大的社交电商之一&#xff0c;为卖家提供了丰富的商品详情接口。这些接口可以帮助卖家快速获取商品信息&#xff0c;提高销售效率。本文将详细介绍如何使用拼多多商品详情接口&#xff0c;以及它的优势和注意事项。 一、拼多多商品详情接口概述 …

代码规范有用吗?听听100W年薪谷歌大佬怎么说!

谷歌内部的 python 代码规范 熟悉 python 一般都会努力遵循 pep8 规范&#xff0c;也会有一些公司制定内部的代码规范。大公司制定规范的目的不是说你一定要怎样去使用编程语言&#xff0c;而是让大家遵守同一套规则&#xff0c;节省其他人阅读代码的成本&#xff0c;方便协作…

一次爽个够,80款H5精品小游戏合集

前言 最近又找到了一款宝藏游戏资源分享给大家&#xff0c;包含 80 款 H5 精品小游戏&#xff0c;都是非常有趣味耐玩的游戏&#xff0c;比如植物大战僵尸、捕鱼达人、消消乐、斗地主、熊出没、飞机大战、象棋等等超级好玩的 H5 小游戏&#xff0c;让大家一次爽个够~ 本文讲解…

Qt 软件调试(一) Log日志调试

终于这段时间闲下来了&#xff0c;可以系统的编写Qt软件调试的整个系列。前面零零星星的也有部分输出&#xff0c;但终究没有形成体系。借此机会&#xff0c;做一下系统的总结。慎独、精进~ 日志是有效帮助我们快速定位&#xff0c;找到程序异常点的实用方法。但是好的日志才能…

【周报2023-11-24】

周报2023-11-24 本周主要工作下周工作计划 本周主要工作 本周的话一个主要工作有&#xff1a; 前后端进行联调接口&#xff1a; 那么目前为止的话&#xff0c;已经调通的接口 可以使用的是个人中心 历史生成的接口 选择新模板 新模板详情 ps: 下周工作计划 主要的话就是将…

【转载】如何在Macbook上把Ubuntu安装到移动硬盘里

我的设备系统版本、遇到的问题和解决&#xff1a; Mac&#xff1a;macOS Ventura 13.3 Ubuntu&#xff1a;22.04.3 问题&#xff1a; 按照这个教程在【3.3.10】修改完启动项后&#xff0c;Mac系统无法启动&#xff0c;Ubuntu可以正常启动。 原因&#xff1a; Mac找不到启动引导…

【Vue】浏览器安装vue插件

首先看一下安装之后的效果&#xff0c;再考虑一下要不要安装 安装完之后&#xff0c;打开浏览器控制台&#xff08;ctrl shift j) <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title</t…

多回路交流三相单相电压电流电量监测开口式互感器适用多种环境用电能耗监控

1 产品概述 多回路交流无线电压电流传感器/电量采集监测仪搭配多路开口式互感器&#xff0c;可以监控采集三相电压、电流、功率和电量等信息&#xff0c;可用于能耗采集监控。支持RS485和4G网络接口&#xff0c;数据可以对接客户指定的第三方云平台。本产品可实现单相/三相用电…

渲染农场渲染一分钟动画需要多少钱?需要渲染多少时间?

现在很公司都开始使用渲染农场渲染动画&#xff0c;但是还是有很多人不知道渲染农场渲染动画需要多少钱&#xff0c;需要渲染多少时间。在这篇文章中我们将为你一一解答&#xff0c;为你提供一个清晰的参考。 渲染农场的收费通常是按照渲染的使用时间收费&#xff0c;渲染十分…

讲概念谈愿景AI Agent名不副实?看实在智能RPA Agent智能体如何落地!

OpenAI在首届开发者大会上推出了GPTs和Assitant API&#xff0c;不仅改写了AI Agent的构建范式&#xff0c;也把AI智能体的应用推向一个新高潮。GPTs和GPT商店&#xff0c;使得用户无需编码通过自然语言就能创建并拥有多个专属私人助理&#xff0c;且可以如在苹果应用商店一样在…

yarn:无法加载文件 C:\Users\***\AppData\Roaming\npm\yarn.ps1,因为在此系统上禁止运行脚本

原因&#xff1a;PowerShell 脚本的执行有着严格的安全策略限制&#xff01; 解决方案&#xff1a;管理员身份启动Windows PowerShell 在命令行中输入set-ExecutionPolicy RemoteSigned 再使用yarn就可以了

JavaScript实现动态背景颜色

JavaScript实现动态背景颜色 前言实现过程HTML实现过程CSS实现过程JS实现过程全部源码 前言 本文主要讲解JavaScript如何实现动态背景颜色&#xff0c;可以根据颜色选择器选择的颜色而实时更新到背景中&#xff0c;如下图所示。 当我们在颜色选择器中改变颜色时&#xff0c;会…

抖音电商品牌力不足咋办?如何升级或强开旗舰店、官方旗舰店?我们有妙招!

随着抖音电商的发展&#xff0c;越来越多的商家蜂拥而至&#xff0c;入驻经营抖音小店... 然而我们在开店的时候&#xff0c;选择开通官方旗舰店、旗舰店、专营店或专卖店&#xff0c;却被系统提示为你的商标品牌力不足&#xff0c;无法开通官方旗舰店、旗舰店、专营店、专卖店…

windows事件查看器日志

Windows 事件查看器&#xff08;Event Viewer&#xff09;是 Windows 操作系统提供的一个内置工具&#xff0c;它用于管理和查看系统、应用程序和安全事件日志。在 Windows 系统中&#xff0c;各种活动和错误都会被记录到事件日志中&#xff0c;包括系统启动、应用程序崩溃、安…