讲概念谈愿景AI Agent名不副实?看实在智能RPA Agent智能体如何落地!

OpenAI在首届开发者大会上推出了GPTs和Assitant API,不仅改写了AI Agent的构建范式,也把AI智能体的应用推向一个新高潮。GPTs和GPT商店,使得用户无需编码通过自然语言就能创建并拥有多个专属私人助理,且可以如在苹果应用商店一样在GPT商店出售和购买这些专属助理。

就连比尔盖茨也发表了其对AI Agent的看法。他所定义的智能体不仅会改变人与计算机交互的方式,还将颠覆软件行业,带来自人类从键入命令到点击图标以来最大的计算革命,智能体会成为继Android、iOS和Windows等之后的下一个平台。

这些无疑不在向我们透露出,一个人人都能构建Agent的时代已然到来,Agent无处不在的序幕也已拉开。AI Agent大势所趋,已经成为LLM落地应用的主要途径。借着GPTs的火和比尔盖茨的风,很多LLM研发与应用厂商都打出了Agent的牌。

概念化陈述的AI Agent与实体化应用的AI Agent,自然存在很大差距。随着类似这样的信息越来越多,大众也对智能体到底是什么且对智能体能否在大企业客户内部真正落地充满了好奇。而市场上的智能体产品从服务的目标客群和具体落地的产品能力来看,可以分为以下几大类:

01、非平台级智能体产品

服务单一场景,集成的自动化实现需外部API们加持

▷ 服务场景单一

▷ 缺乏特定行业知识库KNOW-HOW

▷ 非平台级智能体程序联动与操作差强人意

非平台级AI Agent智能体产品目前比较常见的运用领域包含:使用它自动购买机票、定披萨、写总结、收发邮件,在流程自动化实现方面是属于提升生产力的工具。在使用GPTs通过Zapier(连接器)后可以通过海量API连接更多商业应用,可以在很多业务场景中使用。

而现在市面上的大多数Agent智能体,包括OpenAI推出的GPTs,不过就是构建了一个基于某知识库或者专业数据的Chatbot。使用这些智能体进行问答交互,比如获取行业资讯、报告等,都可以做到对答如流。但如果要求他们针对特定行业的业务流程进行更深的自动化实现或是帮助企业实现业务逻辑更复杂的流程自动化,这类智能体就会露怯。

另外这类智能体在程序联动与操作方面还有很大差距,主要现在还无法用GPTs直接操作SAP或者金蝶等ERP系统,因为中其中涉及到了API的应用、授权、维护以及无API管理软件的连接问题。

所以,无论现在对AI Agent的讨论多么热烈,不管1.3W+的GPTs和大量第三方Agents展现的应用场景有多丰富,它们仍然只能算是Agent智能体的初级或非平台级运用,尚无法深度参与及影响广大组织的业务自动化实现。

而要想发挥AI Agent的更大价值和服务于更广阔的业务场景,智能体还是要落到B端的商业落地与超量级的应用上去。而这,也就是比尔盖茨所提及的智能体的平台价值。

02、AI Agent平台化价值

为企业客户提供闭环,安全、一站式智能体数字员工体验

▷ 构建-应用-分享-反馈的平台级智能体

▷ 一站式智能体数字员工体验

AI Agent智能体平台化本身要实现的就是构建一个以智能体为主的平台,它同时也是Agent 智能体分发平台。是为了让企业流程自动化负责人们更方便的构建与应用各种Agent,该智能体平台会基于构建-应用-分享-反馈的应用路径发展,同时Agent的架构逻辑与思维也会用于支持平台的整体运营。

智能体的平台属性意味着它不只仅仅用于构建和分发Agent,更重要的是能够为用户提供包括安全、运营、维护等在内的交付能力。不仅需要内置为用户构建智能体所需要的各种插件和组件,还需要能够在智能体构建过程中随时给与用户反馈以保证项目成功。即实现为B端客户提供一站式智能体数字员工解决方案的目标。

而智能体的平台化实现可以完美规避像最近GPTs推出后OpenAI出现的各种安全问题。例如在数据安全上根本无法过企业用户的关,不是私有化部署的用户,几乎都不敢构建GPTs,更不用说对外分享。

从业务流程角度来看,Agent的应用是在LLM的基础上进一步实现的业务流程自动化。而目前包括GPTs在内的各种AI智能体表现来看,普遍存在两种情况:

一是安全系数不过关,频频出现的数据泄漏问题让广大组织望而生畏,而中小企业又没有能力私有化部署LLM;

二是Agent所带来的流程自动化仍停留于粗浅层面,尚无法为企业内部动辄几十上百种的业务系统提供业务流自动化支持。

所以,AI Agent想要真正在B端实现大量业务场景的落地商用,需要综合考量其自身的安全性、技术发展周期是否成熟以及To B端的场景是否密切贴合等。

03、企业级AI智能体平台

你说,PC做!所见即所得

▷ 企业自动化实现必备的智能体数字员工

▷ 自主拆解任务

▷ 感知当前环境

▷ 执行并且反馈

▷ 记忆历史经验

在讲述企业级AI智能体平台之前,我们先来看一个真实应用案例。

这是一个使用RPA智能体自动构建「从XX网银客户端下载交易数据(敏感信息打码)」自动化流程的应用案例,可以看到要构建这样一个自动化流程,只需在TARS大模型对话框输入“打开客户端,查询默认账号几年的交易数据,并下载导出”,TARS就能自动创建执行计划,点击执行它就能按照执行计划一步步去执行,等它执行完以后,一个可以复用的自动化流程也构建完成了。

使用这种方式构建自动化流程,人机协作的部分也可以出现智能体生成的流程步骤需要修改时才会出现。整个流程构建的过程中不再需要“拖拉拽”各种组件和代码块,任何业务线上的工作人员都能随时根据自己实际业务需求来通过企业级AI智能体实现可视,人机共创的自动化流程。

而案例所使用的AI智能体产品,是实在智能推出的RPA Agent智能体。这是一个能够自主拆解任务、感知当前环境、执行并且反馈、记忆历史经验的RPA Agent,进一步降低了智能体数字员工的使用门槛。

实在智能凭借其自创业初就深深扎根在AI领域强大的自研能力和帮助大中型企业客户获取丰富的自动化落地解决方案的经验,在经历第一代专家模式RPA、第二代易用模式IPA之后,迭代成为现在的第三代对话模式RPA,即融合TARS大语言模型的RPA Agent智能体

实在智能垂直领域大模型TARS的推出,为RPA数字员工注入“TARS+ISSUT(智能屏幕语义理解技术)”双模引擎。双模互动构成了TARS-RPA-Agent,实现对屏幕上一切元素的自动化操作,并为行业带来“你说,PC做”全新工作布置方式,实现流程自动化创建的“所说即所得”

这里“你说,PC做”的意思是,通过RPA智能体构建包括所有企业管理软件在内的自动化操作流程,而并非通过GPT builder等Agent构建平台构建类GPTs的轻量级Agent。如果说其他平台构建的Agent还是Agent工具,RPA Agent构建的Agent则是智能体数字员工。

RPA Agent智能体不只发挥了LLM理解与分析的优势,更借助ISSUT技术对各类C/S、B/S架构的企业应用进行页面识别、理解和操作,同时保留了RPA特色,只要能够识别的元素全部都能用来构建流程自动化的实现。同时可以面向包含API接口及UI自动化的所有管理程序构建自动化程序,故而可以完全用于企业运营的业务流程自动化构建。

04、超自动化平台

Agent 智能体数字员工才更靠谱

▷ 成熟的超自动化底层技术融合能力

▷ 最全的平台级部署和交付能力

▷ 可扩展的智能体平台级能力

▷ 丰富和复杂业务场景自动化部署经验

企业要引入AI智能体进行流程优化,必须经过成本控制、投入预算、实现效率、安全管控等多方面严格及缜密的评估。这就要求技术供应商提供的必须是平台级解决方案,而不是只针对单一、个别场景需求来提供的智能体自动化解决方案。

越复杂的业务流程自动化,对智能体厂商平台的底层技术融合能力、数据安全性掌控能力、产品部署后的运营和维护能力、交付能力及产品和解决方案的可扩展能力等的要求也就越严格。这也对AI Agent技术供应商提出了更高的要求,必需具备丰富的帮大场实现超大和复杂业务场景自动化落地的经验

大型企业引入新的AI技术不允许任何试错成本,因此技术供应商给出的解决方案必须是开箱即用、具备行业KNOW-HOW术语和业务规则的真实智能体数字员工。也只有这样的标准化智能体,才能被纳入企业的内部编制中去统一管理和调度。

除此之外,要实现AI Agent更好地商用,需要考虑接口成本、隐私、管理、授权等诸多因素,这既是很多供应商的技术与产品门槛,也是广大企业选型的重要依据。

所以,企业在选择用于业务流程自动化的AI智能体时,也是优先考虑超自动化厂商推出的AI智能体产品,而不是选择LLM厂商推出的尚未成熟的通过API连接各种插件的单一智能体解决方案。

这种情况下,在B端市场,由ERP、BPM、超自动化等企业管理软件厂商推出的AI智能体反而更受关注。大部分企业会根据自身需求,选择能够能够结合业务特点、具备丰富流程自动化落地经验且能够解决更复杂更庞大业务流程自动化的需求的技术供应商,以快速实现新AI智能体解决方案落地。

这也是为什么老牌RPA厂商融合LLM后,更容易将智能体做成平台级别产品的原因。

就如推出RPA Agent智能体的实在智能,除了具备上面所列的多个先发优势外:已经拥有丰富落地案例的RPA、IDP、流程挖掘、ISSUT等所有产品组合都是按照平台级别打造的,现在的RPA智能体也是在之前超自动化平台的基础上融合LLM及Agent架构打造的

实在智能的RPA Agent智能体产品自诞生之日开始,就是比尔盖茨所说的平台级智能体产品

05、AI Agent前半场

实在智能平台级AI智能体先跑出来了

▷ 高安全性

▷ 高易用性

▷ 强扩展能力

在超自动化领域,很多人认为LLM厂商推出的AI Agent,可能会优先颠覆之前的RPA、低代码、工作流、流程挖掘等企业管理平台。

但现在深入了解后发现的真相却是,这些超自动化平台通过融合自有大语言模型或者集成第三方大语言模型API,在此基础上推出的AI Agent反而更胜一筹,无论在安全性方面,还是易用性、扩展能力等方面,都明显优于现在市面上其他Agent。

如果套上“LLM+规划+记忆+工具”这个Agent架构,RPA、低代码等都属于工具,但这个工具是融合AI等多种技术的平台级别工具,它与GPT等通过API调用的轻量级工具有着显著区别。

有的推出Agent智能体的厂商如实在智能,也推出了自己的垂直领域大模型,因此在Agent构建及技术架构方面可以有更多的选择以及灵活的策略。更重要的作为超自动化厂商,他们拥有更多的技术、工具、数据以及经验,可以基于自身优势打造更符合产品特性及用户属性的AI智能体,并能够为用户定制专属的个性化企业级AI智能体。

这样的AI智能体能够更好地理解用户指令意图并为RPA等工具规划各种任务,更能够无缝融合及适配所有工具、数据、知识及经验。

目前看来由企业管理软件厂商推出的平台级AI Agent明显要靠谱得多,且已真正实现落地商用。

AI Agent前半场,实在智能平台级AI智能体先跑出来了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/184816.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

yarn:无法加载文件 C:\Users\***\AppData\Roaming\npm\yarn.ps1,因为在此系统上禁止运行脚本

原因:PowerShell 脚本的执行有着严格的安全策略限制! 解决方案:管理员身份启动Windows PowerShell 在命令行中输入set-ExecutionPolicy RemoteSigned 再使用yarn就可以了

JavaScript实现动态背景颜色

JavaScript实现动态背景颜色 前言实现过程HTML实现过程CSS实现过程JS实现过程全部源码 前言 本文主要讲解JavaScript如何实现动态背景颜色,可以根据颜色选择器选择的颜色而实时更新到背景中,如下图所示。 当我们在颜色选择器中改变颜色时,会…

抖音电商品牌力不足咋办?如何升级或强开旗舰店、官方旗舰店?我们有妙招!

随着抖音电商的发展,越来越多的商家蜂拥而至,入驻经营抖音小店... 然而我们在开店的时候,选择开通官方旗舰店、旗舰店、专营店或专卖店,却被系统提示为你的商标品牌力不足,无法开通官方旗舰店、旗舰店、专营店、专卖店…

windows事件查看器日志

Windows 事件查看器(Event Viewer)是 Windows 操作系统提供的一个内置工具,它用于管理和查看系统、应用程序和安全事件日志。在 Windows 系统中,各种活动和错误都会被记录到事件日志中,包括系统启动、应用程序崩溃、安…

linux如何查看文件的hash数值

在Linux系统中,你可以使用各种工具来查看文件的哈希值。下面是一些常见的方法: md5sum命令: md5sum 文件名例如: md5sum example.txtsha1sum命令: sha1sum 文件名例如: sha1sum example.txtsha256sum命令&a…

PSP - 蛋白质真实长序列查找 PDB 结构短序列的算法

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/134599076 在蛋白质结构预测的过程中,输入一般是蛋白质序列(长序列),预测出 PDB 三维结构,再和 Ground Truth …

麒麟linux离线安装dotnet core

1. 下载 dotnet core,以3.1为例 下载地址: 下载 .NET Core 3.1 (Linux、macOS 和 Windows) 查看linux cpu类型,然后根据类型下载 uname -m #结果是: aarch64 2. 放到指定目录,比如:/usr/dotnet 3. 解压dotnet-sdk-3.1.426-linux-arm64.tar.gz cd /usr/dotnet tar –zxvf a…

数字图像处理(实践篇)一 将图像中的指定目标用bBox框起来吧!

目录 一 实现方法 二 涉及的OpenCV函数 三 代码 四 效果图 一 实现方法 ①利用OTSU方法将前景与背景分割。 ②使用连通区域分析可以将具有相同像素值且位置相邻的前景像素点组成的图像区域识别。 ③画bbox。 ④显示结果。 二 涉及的OpenCV函数 ① OpenCV提供了cv2.th…

Android 打包aar包含第三方aar 解决方案

Android 打包aar包含第三方aar 因项目需要,打包aar包含第三方aar,如果直接对module进行打包会产生一些问题。 * What went wrong: Direct local .aar file dependencies are not supported when building an AAR. The resulting AAR would be broken be…

金风玉露一相逢|实在智能联手浪潮信息合力致新生成式AI产业生态

近日,实在智能正式加入浪潮信息元脑生态AIStore。 实在智能是一家基于AGI大模型超自动化技术,领跑人机协同时代的人工智能科技公司,以其自研垂直的“TARS(塔斯)大语言模型”技术、实在RPA Agent智能体数字员工产品和超…

土壤教学经典用图30张

一、土壤分布 二、土壤形成与气候 三、土壤形成与地形 四、土壤形成与成土母质 五、成土过程示意图 六、土壤剖面实景图 七、土壤剖面示意图 八、土壤质地 以上图片多来源于 人教、湘教、鲁教、中图、沪教 五套新教材及地图册

unity Terrain 性能问题

在实践过程中unity发生进入场景GPU爆显存的情况,经过调查发现是使用Terrain造成的问题,这个问题在使用一个Terrain的时候并不会发生,但是在使用多个时会发生。 似乎在使用过程中Terrain会直接把Terrain的整个地图加载,造成移动设…

Duplicate 模型中的 ROLLUP(十六)

因为 Duplicate 模型没有聚合的语意。所以该模型中的 ROLLUP,已经失去了“上卷”这一层含义。而仅仅是作为调整列顺序,以命中前缀索引的作用。下面详细介绍前缀索引,以及如何使用 ROLLUP 改变前缀索引,以获得更好的查询效率。 前…

【广州华锐互动】Web3D云展编辑器能为展览行业带来哪些便利?

在数字时代中,传统的展览方式正在被全新的技术和工具所颠覆。其中,最具有革新意义的就是Web3D云展编辑器。这种编辑器以其强大的功能和灵活的应用,正在为展览设计带来革命性的变化。 广州华锐互动开发的Web3D云展编辑器是一种专门用于创建、编…

微服务学习|初识MQ、RabbitMQ快速入门、SpringAMQP

初识MQ 同步通讯和异步通讯 同步通讯是实时性质的,就好像你用手机与朋友打视频电话,但是,别人再想与你视频就不行了,异步通讯不要求实时性,就好像你用手机发短信,好多人都能同时给你发短信,你…

java springboot测试类虚拟MVC环境 匹配返回值与预期内容是否相同 (JSON数据格式) 版

上文java springboot测试类鉴定虚拟MVC请求 返回内容与预期值是否相同我们讲了测试类中 虚拟MVC发送请求 匹配返回内容是否与预期值相同 但是 让我意外的是 既然没人骂我 因为我们实际开发 返回的基本都是json数据 字符串的接口场景是少数的 我们在java文件目录下创建一个 dom…

U9二次开发之轻量服务项目开发

最近公司要开发一个下载图纸的U9轻量级接口,轻量级接口就是restful api,可以直接通过get、post等方式调用,参数的传送和结果的返回都使用JSON格式,用起来比Webservice接口爽多了。 如果是开发新的接口,我建议都用轻量…

CentOS7磁盘挂载

1 引言 本文主要讲述CentOS7磁盘挂载相关知识点和操作。 2 磁盘挂载 步骤1: 查看机器所挂硬盘及分区情况 fdisk -l查询结果: 由上图可以看到该结果包含:硬盘名称、硬盘大小等信息。 属性解释说明Disk /dev/vda硬盘名称53.7G磁盘大…

vue3中引入svg矢量图

vue3中引入svg矢量图 1、前言2、安装SVG依赖插件3、在vite.config.ts 中配置插件4、main.ts入口文件导入5、使用svg5.1 在src/assets/icons文件夹下引入svg矢量图5.2 在src/components目录下创建一个SvgIcon组件5.3 封装成全局组件,在src文件夹下创建plugin/index.t…

一穿一戴一世界 | 紫光展锐2023智能穿戴沙龙成功举办

11月23日,紫光展锐在深圳成功举办了以“一穿一戴一世界”为主题的2023智能穿戴沙龙。展锐智能穿戴沙龙已举办四届,旨在为行业提供启发性的观点和前瞻性的创新理念。本届沙龙吸引了终端厂商、行业翘楚、生态伙伴等行业各领域超过500人汇聚一堂&#xff0c…