PyTorch深度学习实战——人体姿态估计

PyTorch深度学习实战——人体姿态估计

    • 0. 前言
    • 1. 人体姿态估计
    • 2. 使用 Detectron2 实现人体姿态估计
    • 相关链接

0. 前言

我们已经学习了如何执行实例分割,在本节中,我们将了解如何利用 Detectron2 对图像执行人体姿态估计,检测图像中人物的身体部位的关键点。人体关键点在包括体育分析和智能安防能领域具有重要应用。在本节中,我们将利用配置文件指定预训练的关键点检测模型。

1. 人体姿态估计

人体姿态估计是计算机视觉领域的一项任务,旨在从图像或视频中推断人体的姿态信息。它通过检测和预测人体关键点的位置来估计人体的姿态,如头部、手臂、腿部等的位置和角度。人体姿态估计可以分为两个主要方向:

  • 单人姿态估计:单人姿态估计是指在图像或视频中仅估计一个人的姿态信息,需要检测出人体的关键点,并通过建立骨架或姿态模型来表示人体的姿态,单人姿态估计在许多应用中都有广泛的应用,如运动分析、人机交互、虚拟现实等
  • 多人姿态估计:多人姿态估计是指在图像或视频中同时估计多个人的姿态信息,需要正确地区分和跟踪不同的人体,并估计出每个人的关键点和姿态信息,多人姿态估计在人群监控、群体行为分析等领域具有重要的应用价值

人体姿态估计常常使用深度学习方法,包括卷积神经网络和循环神经网络等,深度学习模型可以从大量的标注数据中学习人体关键点的特征表示和姿态模式,从而实现准确的姿态估计。可以将人体姿态估计与其他任务结合,如姿态跟踪、行为识别等,以实现更复杂场景下的综合分析和理解。
人体姿态估计在许多领域中都有着广泛的应用,包括体感游戏、虚拟现实、动作捕捉、医学影像分析等。随着技术的不断进步和算法的改进,人体姿态估计将在更多领域中发挥越来越重要的作用,并为人们提供更多的智能交互和实时分析能力。

2. 使用 Detectron2 实现人体姿态估计

在本节中,我们将利用 Detectron2 实现人体姿态估计任务。

(1) 导入所需库:

import detectron2
from detectron2.utils.logger import setup_logger
setup_logger()

from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog
import cv2

(2) 获取配置文件并加载 Detectron2 中的预训练关键点检测模型:

cfg = get_cfg() # get a fresh new config
cfg.merge_from_file(model_zoo.get_config_file("COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml"))

(3) 指定配置参数:

cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml")
predictor = DefaultPredictor(cfg)

(4) 加载测试图像:

im = cv2.imread('example.jpeg',1)
im = cv2.resize(im, (0, 0), fx=0.5, fy=0.5) # resize image to half its dimensions

(5) 对图像进行预测并绘制关键点:

outputs = predictor(im)
v = Visualizer(im[:,:,::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2)
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
import matplotlib.pyplot as plt
plt.imshow(out.get_image())
plt.show()

人体姿态估计

从以上输出结果可以看出,该模型能够准确地识别出图像中人物对应的各个关键点。

相关链接

PyTorch深度学习实战(1)——神经网络与模型训练过程详解
PyTorch深度学习实战(2)——PyTorch基础
PyTorch深度学习实战(3)——使用PyTorch构建神经网络
PyTorch深度学习实战(4)——常用激活函数和损失函数详解
PyTorch深度学习实战(5)——计算机视觉基础
PyTorch深度学习实战(6)——神经网络性能优化技术
PyTorch深度学习实战(7)——批大小对神经网络训练的影响
PyTorch深度学习实战(8)——批归一化
PyTorch深度学习实战(9)——学习率优化
PyTorch深度学习实战(10)——过拟合及其解决方法
PyTorch深度学习实战(11)——卷积神经网络
PyTorch深度学习实战(12)——数据增强
PyTorch深度学习实战(13)——可视化神经网络中间层输出
PyTorch深度学习实战(14)——类激活图
PyTorch深度学习实战(15)——迁移学习
PyTorch深度学习实战(16)——面部关键点检测
PyTorch深度学习实战(17)——多任务学习
PyTorch深度学习实战(18)——目标检测基础
PyTorch深度学习实战(19)——从零开始实现R-CNN目标检测
PyTorch深度学习实战(20)——从零开始实现Fast R-CNN目标检测
PyTorch深度学习实战(21)——从零开始实现Faster R-CNN目标检测
PyTorch深度学习实战(22)——从零开始实现YOLO目标检测
PyTorch深度学习实战(23)——使用U-Net架构进行图像分割
PyTorch深度学习实战(24)——从零开始实现Mask R-CNN实例分割

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/181044.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Atlassian Confluence 路径遍历和命令执行漏洞 (CVE-2019-3396)

漏洞描述 Confluence 是由澳大利亚软件公司 Atlassian 开发的基于 Web 的企业 wiki。 Atlassian Confluence 6.14.2 版本之前存在一个未经授权的目录遍历漏洞,攻击者可以使用 Velocity 模板注入读取任意文件或执行任意命令。 漏洞环境及漏洞利用 启动docker环境…

GPRS电表和4G电表有哪些区别?

随着科技的不断进步,通信技术在智能电网中的应用越来越广泛。其中,GPRS电表和4G电表作为两种常见的远程智能抄表方案,为广大用户带来了便捷的用电管理体验。然而,这两种电表在技术特点、应用场景等方面存在一定差异。下面&#xf…

Authing 入选《 2023 年央国企信创应用与实践研究报告》优秀服务商

11 月 21 日,Authing 身份云作为国内唯一事件驱动云原生身份平台入选《 2023 年央国企信创应用与实践研究报告》优秀服务商,该报告由第一新声研究院合伙人、Gartner 前高管合伙人/副总裁李长华牵头指导,第一新声创始人兼 CEO 组织&#xff0c…

华中科技大学李松课题组,利用机器学习预测多孔材料水吸附等温线

多孔材料的水吸附等温线是一个非常重要的参数,但这一参数的获得并不容易。这是因为多孔材料种类过多、结构多元,通过实验和计算的方式获得水吸附等温线数据成本过高,耗时过长。 华中科技大学的李松课题组,建立了一个两步机器学习模…

深度学习模型训练计算量的估算

深度学习模型训练计算量的估算 方法1:基于网络架构和批处理数量计算算术运算次数前向传递计算和常见层的参数数量全连接层(Fully connected layer)参数浮点数计算量 CNN参数浮点数计算量 转置CNN参数浮点数计算量 RNN参数浮点数计算量 GRU参数…

java--static修饰成员方法

1.成员方法的分类 ①类方法:有static修饰的成员方法,属于类 ②实例方法:无static修饰的成员方法,属于对象。 2.成员方法的执行原理 解析: 第一行代码:扫描class包名,在方法区生成一个Test.cl…

如何用Python爬取全国高校数据?

前言 Python是一门强大的编程语言,它可以用于爬取互联网上的各种数据。在这篇文章中,我们将学习如何使用Python爬取全国高校数据,并使用代理IP进行爬取。 本文主要分为以下几个部分: 数据来源及需求安装依赖包及导入模块爬取全…

G320E是一种低荣声、固定频率的电荷泵型DC/DC转换器

G320E 低噪声电荷泵DC/DC转换器 产品概述: G320E是一种低荣声、固定频率的电荷泵型DC/DC转换器,在输入电压范围在2.7V到5.0V的情况下,该器件可以产生5V的输出电压,最大输出电流达到300mA.G320E外部元件少,非常适合于…

MySQL-01-MySQL基础架构

1-MySQL逻辑结构 如果能在头脑中构建一幅MySQL各组件之间如何协同工作的架构图,有助于深入理解MySQL服务器。下图展示了MySQL的逻辑架构图。 MySQL逻辑架构整体分为三层,最上层为客户端层,并非MySQL所独有,诸如:连接处…

掌握视频色彩变幻特效,让你的影片更具魅力!

如果你是一名视频制作爱好者或专业人士,那么一定会知道在视频中添加特效的重要性。今天,我们将向你介绍一种令人惊叹的特效技巧——色彩变幻。通过掌握这个技巧,你将能够为你的影片增添独特的视觉效果,吸引观众的注意力。 首先第一…

亚信安慧AntDB MTK数据同步工具之数据稽核

数据稽核是一种用于确保表数据准确性和一致性的重要方法,它涉及到检查数据的完整性、一致性、有效性和合法性,以及与预期规范的匹配程度等多个方面。随着大数据时代的到来,通过有效的数据稽核,组织可以提高决策的准确性和效率&…

cefsharp119.4.30(cef119.4.3,Chromium119.0.6045.159)版本升级体验支持H264及其他多个H264版本

Cefsharp119.4.30,cef119.4.3,Chromium119.0.6045.159 此更新包括一个高优先级安全更新 This update includes a high priority security update. 说明:此版本119.4.3支持H264视频播放(需要联系我),其他版本。.NETFramework 4.6.2 NuGet Gallery | CefSharp.WinForms 119.…

IT支持团队的绩效指标和最佳实践

一名员工在远程时因笔记本问题寻求IT支持,尽管他们多次尝试排除故障,但由于缺乏专业知识,最终还是无法访问工作所需的应用程序。这时,他们需要一名专业的 IT 技术人员来指导他们,但他们只能等待有人注意到并回应他们的…

Adobe 家族系列download

adobe 前言 Adobe公司的产品线中拥有多个家族桶,下面是Adobe全家桶产品的功能介绍: Creative Cloud(创意云):包含Photoshop、Illustrator、InDesign、Premiere Pro、After Effects、Lightroom等创意设计、视频制作和…

Java的Service Provider Interface (SPI)机制动态地加载和发现服务

基本说明 “src\main\resources\META-INF\services” 是Java项目中常见的一个路径,这个路径通常被用来放置服务提供者的配置文件。在Java的Service Provider Interface (SPI)机制中,这个目录下的文件被用来注册和发现服务。 具体来说,如果你…

编写自己的CA和TA与逆向

参考内容《手机安全和可信应用开发》 https://note.youdao.com/s/MTlG4c1w 介绍 TA的全称是Trust Application, 即可信任应用程序。 CA的全称是Client Applicant, 即客户端应用程序。 TA运行在OP-TEE的用户空间, CA运行在REE侧。 CA执行时代…

NB水表能承受最大的水压是多少?

NB水表,作为新一代智能水表,以小巧的体积、稳定的性能和强大的功能赢得了市场的认可。那么,它究竟能承受多大的水压呢?接下来,小编来为大家揭秘下,一起来看下吧! 一、NB水表概述 NB水表&#xf…

森利威尔SL4010 升压恒压 12V升压24V 12V升压36V 12V升压48V

在当今的电子设备中,电源管理系统的设计是非常重要的。为了保证设备的稳定运行,升压和恒压电源的应用已经成为不可或缺的一部分。在这篇文章中,我们将介绍森利威尔SL4010升压恒压电源,它可以实现12V升压24V、12V升压36V、12V升压4…

2023亚太杯数学建模竞赛C题新能源电动汽车数据分析与代码讲解

C题论文包括摘要、问题重述、问题分析、模型假设、符号说明、模型的建立和求解(问题1模型的建立和求解、问题2模型的建立和求解、问题3模型的建立和求解、问题4模型的建立和求解、问题5模型的建立和求解)、模型的评价等等, 视频讲解如下&…