MySQL-01-MySQL基础架构

1-MySQL逻辑结构

       如果能在头脑中构建一幅MySQL各组件之间如何协同工作的架构图,有助于深入理解MySQL服务器。下图展示了MySQL的逻辑架构图。

       MySQL逻辑架构整体分为三层,最上层为客户端层,并非MySQL所独有,诸如:连接处理、授权认证、安全等功能均在这一层处理。

      MySQL大多数核心服务均在中间这一层,包括查询解析、分析、优化、缓存、内置函数(比如:时间、数学、加密等函数)。所有的跨存储引擎的功能也在这一层实现:存储过程、触发器、视图等。

      最下层为存储引擎,其负责MySQL中的数据存储和提取。和Linux下的文件系统类似,每种存储引擎都有其优势和劣势。中间的服务层通过API与存储引擎通信,这些API接口屏蔽了不同存储引擎间的差异。

2-MySQL查询过程

       我们总是希望MySQL能够获得更高的查询性能,最好的办法是弄清楚MySQL是如何优化和执行查询的。一旦理解了这一点,就会发现:很多的查询优化工作实际上就是遵循一些原则让MySQL的优化器能够按照预想的合理方式运行而已。

当向MySQL发送一个请求的时候,MySQL到底做了些什么呢?

2.1-客户端/服务端通信协议

       MySQL客户端/服务端通信协议是“半双工”的:在任一时刻,要么是服务器向客户端发送数据,要么是客户端向服务器发送数据,这两个动作不能同时发生。一旦一端开始发送消息,另一端要接收完整个消息才能响应它,所以我们无法也无须将一个消息切成小块独立发送,也没有办法进行流量控制。

       客户端用一个单独的数据包将查询请求发送给服务器,所以当查询语句很长的时候,需要设置max_allowed_packet参数。但是需要注意的是,如果查询实在是太大,服务端会拒绝接收更多数据并抛出异常。

       与之相反的是,服务器响应给用户的数据通常会很多,由多个数据包组成。但是当服务器响应客户端请求时,客户端必须完整的接收整个返回结果,而不能简单的只取前面几条结果,然后让服务器停止发送。因而在实际开发中,尽量保持查询简单且只返回必需的数据,减小通信间数据包的大小和数量是一个非常好的习惯,这也是查询中尽量避免使用SELECT *以及加上LIMIT限制的原因之一。

2.2-查询缓存

       在解析一个查询语句前,如果查询缓存是打开的,那么MySQL会检查这个查询语句是否命中查询缓存中的数据。如果当前查询恰好命中查询缓存,在检查一次用户权限后直接返回缓存中的结果。这种情况下,查询不会被解析,也不会生成执行计划,更不会执行。

      MySQL将缓存存放在一个引用表(不要理解成table,可以认为是类似于HashMap的数据结构),通过一个哈希值索引,这个哈希值通过查询本身、当前要查询的数据库、客户端协议版本号等一些可能影响结果的信息计算得来。所以两个查询在任何字符上的不同(例如:空格、注释),都会导致缓存不会命中。

       如果查询中包含任何用户自定义函数、存储函数、用户变量、临时表、MySQL库中的系统表,其查询结果都不会被缓存。比如函数NOW()或者CURRENT_DATE()会因为不同的查询时间,返回不同的查询结果,再比如包含CURRENT_USER或者CONNECION_ID()的查询语句会因为不同的用户而返回不同的结果,将这样的查询结果缓存起来没有任何的意义。

       既然是缓存,就会失效,那查询缓存何时失效呢?MySQL的查询缓存系统会跟踪查询中涉及的每个表,如果这些表(数据或结构)发生变化,那么和这张表相关的所有缓存数据都将失效。正因为如此,在任何的写操作时,MySQL必须将对应表的所有缓存都设置为失效。如果查询缓存非常大或者碎片很多,这个操作就可能带来很大的系统消耗,甚至导致系统僵死一会儿。而且查询缓存对系统的额外消耗也不仅仅在写操作,读操作也不例外:

1.任何的查询语句在开始之前都必须经过检查,即使这条SQL语句永远不会命中缓存

2.如果查询结果可以被缓存,那么执行完成后,会将结果存入缓存,也会带来额外的系统消耗

       基于此,我们要知道并不是什么情况下查询缓存都会提高系统性能,缓存和失效都会带来额外消耗,只有当缓存带来的资源节约大于其本身消耗的资源时,才会给系统带来性能提升。但要如何评估打开缓存是否能够带来性能提升是一件非常困难的事情,也不在本文讨论的范畴内。如果系统确实存在一些性能问题,可以尝试打开查询缓存,并在数据库设计上做一些优化,比如:

1.用多个小表代替一个大表,注意不要过度设计

2.批量插入代替循环单条插入

3.合理控制缓存空间大小,一般来说其大小设置为几十兆比较合适

4.可以通过SQL_CACHE和SQL_NO_CACHE来控制某个查询语句是否需要进行缓存

      最后的忠告是不要轻易打开查询缓存,特别是写密集型应用。如果你实在是忍不住,可以将query_cache_type设置为DEMAND,这时只有加入SQL_CACHE的查询才会走缓存,其他查询则不会,这样可以非常自由地控制哪些查询需要被缓存。

       当然查询缓存系统本身是非常复杂的,这里讨论的也只是很小的一部分,其他更深入的话题,比如:缓存是如何使用内存的?如何控制内存的碎片化?事务对查询缓存有何影响等等,读者可以自行阅读相关资料,这里权当抛砖引玉吧。

2.3-语法解析和预处理

       MySQL通过关键字将SQL语句进行解析,并生成一颗对应的解析树。这个过程解析器主要通过语法规则来验证和解析。比如SQL中是否使用了错误的关键字或者关键字的顺序是否正确等等。预处理则会根据MySQL规则进一步检查解析树是否合法。比如检查要查询的数据表和数据列是否存在等。

2.4-查询优化

       经过前面的步骤生成的语法树被认为是合法的了,并且由优化器将其转化成查询计划。多数情况下,一条查询可以有很多种执行方式,最后都返回相应的结果。优化器的作用就是找到这其中最好的执行计划。

       MySQL使用基于成本的优化器,它尝试预测一个查询使用某种执行计划时的成本,并选择其中成本最小的一个。在MySQL可以通过查询当前会话的last_query_cost的值来得到其计算当前查询的成本。

mysql> select * from t_message limit 10;
...省略结果集

mysql> show status like 'last_query_cost';
+-----------------+-------------+
| Variable_name   | Value       |
+-----------------+-------------+
| Last_query_cost | 6391.799000 |
+-----------------+-------------+

      示例中的结果表示优化器认为大概需要做6391个数据页的随机查找才能完成上面的查询。这个结果是根据一些列的统计信息计算得来的,这些统计信息包括:每张表或者索引的页面个数、索引的基数、索引和数据行的长度、索引的分布情况等等。

       有非常多的原因会导致MySQL选择错误的执行计划,比如统计信息不准确、不会考虑不受其控制的操作成本(用户自定义函数、存储过程)、MySQL认为的最优跟我们想的不一样(我们希望执行时间尽可能短,但MySQL值选择它认为成本小的,但成本小并不意味着执行时间短)等等。

MySQL的查询优化器是一个非常复杂的部件,它使用了非常多的优化策略来生成一个最优的执行计划:

(1)重新定义表的关联顺序(多张表关联查询时,并不一定按照SQL中指定的顺序进行,但有一些技巧可以指定关联顺序)

(2)优化MIN()和MAX()函数(找某列的最小值,如果该列有索引,只需要查找B+Tree索引最左端,反之则可以找到最大值,具体原理见下文)

(3)提前终止查询(比如:使用Limit时,查找到满足数量的结果集后会立即终止查询)

(4)优化排序(在老版本MySQL会使用两次传输排序,即先读取行指针和需要排序的字段在内存中对其排序,然后再根据排序结果去读取数据行,而新版本采用的是单次传输排序,也就是一次读取所有的数据行,然后根据给定的列排序。对于I/O密集型应用,效率会高很多)。

随着MySQL的不断发展,优化器使用的优化策略也在不断的进化,这里仅仅介绍几个非常常用且容易理解的优化策略,其他的优化策略,大家自行查阅吧。

2.5-查询执行引擎

       在完成解析和优化阶段以后,MySQL会生成对应的执行计划,查询执行引擎根据执行计划给出的指令逐步执行得出结果。整个执行过程的大部分操作均是通过调用存储引擎实现的接口来完成,这些接口被称为handler API。查询过程中的每一张表由一个handler实例表示。实际上,MySQL在查询优化阶段就为每一张表创建了一个handler实例,优化器可以根据这些实例的接口来获取表的相关信息,包括表的所有列名、索引统计信息等。存储引擎接口提供了非常丰富的功能,但其底层仅有几十个接口,这些接口像搭积木一样完成了一次查询的大部分操作。

2.6-返回结果给客户端

       查询执行的最后一个阶段就是将结果返回给客户端。即使查询不到数据,MySQL仍然会返回这个查询的相关信息,比如该查询影响到的行数以及执行时间等。

如果查询缓存被打开且这个查询可以被缓存,MySQL也会将结果存放到缓存中。

结果集返回客户端是一个增量且逐步返回的过程。有可能MySQL在生成第一条结果时,就开始向客户端逐步返回结果集了。这样服务端就无须存储太多结果而消耗过多内存,也可以让客户端第一时间获得返回结果。需要注意的是,结果集中的每一行都会以一个满足①中所描述的通信协议的数据包发送,再通过TCP协议进行传输,在传输过程中,可能对MySQL的数据包进行缓存然后批量发送。

2.7-小结

回头总结一下MySQL整个查询执行过程,总的来说分为6个步骤:

(1)客户端向MySQL服务器发送一条查询请求

(2)服务器首先检查查询缓存,如果命中缓存,则立刻返回存储在缓存中的结果。否则进入下一阶段

(3)服务器进行SQL解析、预处理、再由优化器生成对应的执行计划

(4)MySQL根据执行计划,调用存储引擎的API来执行查询

(5)将结果返回给客户端,同时缓存查询结果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/181022.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

掌握视频色彩变幻特效,让你的影片更具魅力!

如果你是一名视频制作爱好者或专业人士,那么一定会知道在视频中添加特效的重要性。今天,我们将向你介绍一种令人惊叹的特效技巧——色彩变幻。通过掌握这个技巧,你将能够为你的影片增添独特的视觉效果,吸引观众的注意力。 首先第一…

亚信安慧AntDB MTK数据同步工具之数据稽核

数据稽核是一种用于确保表数据准确性和一致性的重要方法,它涉及到检查数据的完整性、一致性、有效性和合法性,以及与预期规范的匹配程度等多个方面。随着大数据时代的到来,通过有效的数据稽核,组织可以提高决策的准确性和效率&…

cefsharp119.4.30(cef119.4.3,Chromium119.0.6045.159)版本升级体验支持H264及其他多个H264版本

Cefsharp119.4.30,cef119.4.3,Chromium119.0.6045.159 此更新包括一个高优先级安全更新 This update includes a high priority security update. 说明:此版本119.4.3支持H264视频播放(需要联系我),其他版本。.NETFramework 4.6.2 NuGet Gallery | CefSharp.WinForms 119.…

IT支持团队的绩效指标和最佳实践

一名员工在远程时因笔记本问题寻求IT支持,尽管他们多次尝试排除故障,但由于缺乏专业知识,最终还是无法访问工作所需的应用程序。这时,他们需要一名专业的 IT 技术人员来指导他们,但他们只能等待有人注意到并回应他们的…

Adobe 家族系列download

adobe 前言 Adobe公司的产品线中拥有多个家族桶,下面是Adobe全家桶产品的功能介绍: Creative Cloud(创意云):包含Photoshop、Illustrator、InDesign、Premiere Pro、After Effects、Lightroom等创意设计、视频制作和…

Java的Service Provider Interface (SPI)机制动态地加载和发现服务

基本说明 “src\main\resources\META-INF\services” 是Java项目中常见的一个路径,这个路径通常被用来放置服务提供者的配置文件。在Java的Service Provider Interface (SPI)机制中,这个目录下的文件被用来注册和发现服务。 具体来说,如果你…

编写自己的CA和TA与逆向

参考内容《手机安全和可信应用开发》 https://note.youdao.com/s/MTlG4c1w 介绍 TA的全称是Trust Application, 即可信任应用程序。 CA的全称是Client Applicant, 即客户端应用程序。 TA运行在OP-TEE的用户空间, CA运行在REE侧。 CA执行时代…

NB水表能承受最大的水压是多少?

NB水表,作为新一代智能水表,以小巧的体积、稳定的性能和强大的功能赢得了市场的认可。那么,它究竟能承受多大的水压呢?接下来,小编来为大家揭秘下,一起来看下吧! 一、NB水表概述 NB水表&#xf…

森利威尔SL4010 升压恒压 12V升压24V 12V升压36V 12V升压48V

在当今的电子设备中,电源管理系统的设计是非常重要的。为了保证设备的稳定运行,升压和恒压电源的应用已经成为不可或缺的一部分。在这篇文章中,我们将介绍森利威尔SL4010升压恒压电源,它可以实现12V升压24V、12V升压36V、12V升压4…

2023亚太杯数学建模竞赛C题新能源电动汽车数据分析与代码讲解

C题论文包括摘要、问题重述、问题分析、模型假设、符号说明、模型的建立和求解(问题1模型的建立和求解、问题2模型的建立和求解、问题3模型的建立和求解、问题4模型的建立和求解、问题5模型的建立和求解)、模型的评价等等, 视频讲解如下&…

C++算法入门练习——相同的二叉查找树

将第一组n​个互不相同的正整数先后插入到一棵空的二叉查找树中,得到二叉查找树T1​;再将第二组n个互不相同的正整数先后插入到一棵空的二叉查找树中,得到二叉查找树T2​。判断T1​和T2​​是否是同一棵二叉查找树。 二叉查找(搜索)树定义&am…

基于springboot实现校园在线拍卖系统项目【项目源码】

基于springboot实现校园在线拍卖系统演示 Javar技术 JavaScript是一种网络脚本语言,广泛运用于web应用开发,可以用来添加网页的格式动态效果,该语言不用进行预编译就直接运行,可以直接嵌入HTML语言中,写成js语言&…

Jmeter 分布式压测

为什么要分布式 jmeter是100%纯java开发的程序,虚拟用户是以线程实现的,在大量并发情况下,很容易出现CPU、内存消耗过大的问题,甚至会出现java内存溢出。一般一台电脑设置500-600线程数即可,如果超过1000线程&#xf…

【UE5】组成部分

了解UE游戏的基本构成 资源(Asset): 在UE中,资源(Asset)是指游戏中使用到的各种素材,例如模型、纹理、材质、声音、动画、蓝图、数据表格、关卡等(通常以uasset结尾),他…

2022年全国英烈纪念设施数据,各区县均有!

中国是一个拥有悠久历史和灿烂文化的国家,其英烈纪念设施承载着中国人民对为国家独立、民族解放和民主进步而英勇斗争的先烈们的崇敬和缅怀之情。 这些设施不仅是中国革命历史和先烈精神的重要载体,也是传承红色文化、弘扬革命精神的重要场所。 今天分享…

nint和Pattern matching介绍(C#)

nint 最近看C# 9.0时,发现一个有意思的关键词,就是nint,第一次看到这个,于是好奇心爆棚,就去实际操作了一下。 nint i 1000; Console.WriteLine("i{0}", i);实际结果与int的结果是一样的,那为什…

智能配电室电力监控系统

智能配电室电力监控系统是一种专门针对配电室的电力设备进行实时监控和管理的系统。依托电易云-智慧电力物联网,它采用先进的技术手段,对配电室内的电气设备和环境进行全方位、实时的监测和控制,以确保配电室的安全、稳定运行。 该系统的主要…

戳穿人工智能的六个谎言:辨别真伪

目录 1. AI是智能的 2. 始终越大越好 3. AI毫无透明度和问责制可言 4. AI一贯正确 5. AI严重冲击就业市场 6. AI主宰人类 主要结论 相关拓展 人工智能(AI)无疑是我们这个时代的流行语。特别是随着ChatGPT等生成式AI应用程序的出现,A…

使用Pytorch从零开始构建Transformer

在本教程中,我们将使用 PyTorch 从头开始​​构建一个基本的 Transformer 模型。Vaswani 等人提出的 Transformer 模型。在论文“Attention is All You Need”中,是一种专为序列到序列任务(例如机器翻译和文本摘要)而设计的深度学…