Python Pandas简介及基础教程+实战示例。

文章目录

  • 前言
      • 一、Pandas简介
      • 二、Python Pandas的使用
      • 关于Python技术储备
        • 一、Python所有方向的学习路线
        • 二、Python基础学习视频
        • 三、精品Python学习书籍
        • 四、Python工具包+项目源码合集
        • ①Python工具包
        • ②Python实战案例
        • ③Python小游戏源码
        • 五、面试资料
        • 六、Python兼职渠道


前言

Pandas 是python的一个数据分析包,最初由AQR Capital Management于2008年4月开发,并于2009年底开源出来,目前由专注于Python数据包开发的PyData开发team继续开发和维护,今天通过本文给大家介绍Python Pandas的简单使用教程。
在这里插入图片描述


Pandas 是python的一个数据分析包,最初由AQR Capital Management于2008年4月开发,并于2009年底开源出来,目前由专注于Python数据包开发的PyData开发team继续开发和维护,今天通过本文给大家介绍Python Pandas的简单使用教程,感兴趣的朋友一起看看吧

一、Pandas简介

1、Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。

2、Pandas 是python的一个数据分析包,最初由AQR Capital Management于2008年4月开发,并于2009年底开源出来,目前由专注于Python数据包开发的PyData开发team继续开发和维护,属于PyData项目的一部分。Pandas最初被作为金融数据分析工具而开发出来,因此,pandas为时间序列分析提供了很好的支持。 Pandas的名称来自于面板数据(panel data)和python数据分析(data analysis)。panel data是经济学中关于多维数据集的一个术语,在Pandas中也提供了panel的数据类型。

3、数据结构:

Series:一维数组,与Numpy中的一维array类似。二者与Python基本的数据结构List也很相近,其区别是:List中的元素可以是不同的数据类型,而Array和Series中则只允许存储相同的数据类型,这样可以更有效的使用内存,提高运算效率。

Time- Series:以时间为索引的Series。

DataFrame:二维的表格型数据结构。很多功能与R中的data.frame类似。可以将DataFrame理解为Series的容器。以下的内容主要以DataFrame为主。

Panel :三维的数组,可以理解为DataFrame的容器。

Pandas 有两种自己独有的基本数据结构。读者应该注意的是,它固然有着两种数据结构,因为它依然是 Python 的一个库,所以,Python 中有的数据类型在这里依然适用,也同样还可以使用类自己定义数据类型。只不过,Pandas 里面又定义了两种数据类型:Series 和 DataFrame,它们让数据操作更简单了。

二、Python Pandas的使用

修改列数据:

df\['price'\]=df\['price'\].str.replace('人均','') # 删除多余文字
df\['price'\]=df\['price'\].str.split("¥").str\[-1\] # 分割文本串
df\['price'\]=df\['price'\].str.replace('-','0') # 替换文本
df\['price'\]=df\['price'\].astype(int) # 文本转整型

把pandas转换int型为str型的方法

切分列数据:

df\['kw'\]=df\['commentlist'\].str.split().str\[0\].str.replace("口味",'')
df\['hj'\]=df\['commentlist'\].str.split().str\[1\].str.replace("环境",'')
df\['fw'\]=df\['commentlist'\].str.split().str\[2\].str.replace("服务",'')

注意:pandas中操作如果不明确指定参数,则不会修改原数据,而是返回一个新对象。

删除列数据:

del df\['commentlist'\]

排序列数据:

df.sort\_values(by=\['kw','price'\],axis=0,ascending=\[False,True\],inplace=True) 

注意:排序前先用astype转换正确的类型,如str、int或float

重新设置索引列标签顺序:

df.columns=\['类型','店铺名称','点评数量','星级','人均消费','店铺地址','口味','环境','服务'\]

打印前几行数据:

print(df.loc\[:,\['店铺名称','口味','人均消费'\]\].head(6))
# 或者 # print(df.iloc\[0:6,\[1,6,4\]\]) # 前6行(整数)
# 但不能是 # print(df.loc\[0:6,\['店铺名称','口味','人均消费'\]\]) # 从索引0到索引6的行(对象)

综合示例:

图例:

结果:

要求:

(1)对该数据中的comment、price进行数据清洗整理,‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬

(2)将commentlist数据拆分为“口味”、“环境”和“服务”三列后再进行数据清洗整理,‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬

(3)去除commentlist列数据‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬

(4)将此数据按“口味”降序、“人均消费”升序进行排序,‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬

(5)输出排序后前6条数据中的“店铺名称”、“口味”和“人均消费”三列数据。

代码:

import pandas as pd 
df=pd.read\_csv('spdata.csv',encoding='gbk')  #读入文件,编码为gbk # 注意编码,重要

#对数据进行清洗
df\['comment'\]=df\['comment'\].str.replace('条点评','')
df\['price'\]=df\['price'\].str.replace('人均','')
df\['price'\]=df\['price'\].str.split("¥").str\[-1\]
df\['price'\]=df\['price'\].str.replace('-','0')
df\['price'\]=df\['price'\].astype(int)
df\['kw'\]=df\['commentlist'\].str.split().str\[0\].str.replace("口味",'')
df\['hj'\]=df\['commentlist'\].str.split().str\[1\].str.replace("环境",'')
df\['fw'\]=df\['commentlist'\].str.split().str\[2\].str.replace("服务",'')
del df\['commentlist'\]

#按口味降序,人均消费升序进行排序
df.sort\_values(by=\['kw','price'\],axis=0,ascending=\[False,True\],inplace=True) 
#重新设置列索引标签
df.columns=\['类型','店铺名称','点评数量','星级','人均消费','店铺地址','口味','环境','服务'\]

print(df.loc\[:,\['店铺名称','口味','人均消费'\]\].head(6))

方法二:

import pandas as pd
df=pd.read\_csv('spdata.csv',encoding='gbk')

df\['comment'\]=df\['comment'\].str.replace('条点评','')
df\['price'\]=df\['price'\].str.replace('人均','').str.replace('¥','').str.replace('-','0').str.replace(' ','').astype(int)
df\[\['kw','hj','fw'\]\]=df\['commentlist'\].str.replace('口味','').str.replace('环境','').str.replace('服务','').str.split(expand=True).astype(float) # expand将普通的列表转为DataFrame对象
del df\['commentlist'\]

df.sort\_values(by=\['kw','price'\],axis=0,ascending=\[False,True\],inplace=True) # 注意inplace=True
df.columns=\['类型','店铺名称','点评数量','星级','人均消费','店铺地址','口味','环境','服务'\]

print(df\[\['店铺名称','口味','人均消费'\]\].head(6))

注意:df.str.split是列表,加了expand=True之后才是DataFrame对象,或者用.str[x]提取某一列,注意不是df.str.split()[x]而是df.str.split().str[x],前者是对list(二维)操作,后者是对DataFrame操作(取某一列)


关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

二、Python基础学习视频

② 路线对应学习视频

还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~在这里插入图片描述
在这里插入图片描述

③练习题

每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
在这里插入图片描述
因篇幅有限,仅展示部分资料

三、精品Python学习书籍

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述

四、Python工具包+项目源码合集
①Python工具包

学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
在这里插入图片描述

②Python实战案例

光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
在这里插入图片描述

③Python小游戏源码

如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
在这里插入图片描述

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

六、Python兼职渠道

而且学会Python以后,还可以在各大兼职平台接单赚钱,各种兼职渠道+兼职注意事项+如何和客户沟通,我都整理成文档了。
在这里插入图片描述
在这里插入图片描述
这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/177066.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

『亚马逊云科技产品测评』活动征文|AWS 存储产品类别及其适用场景详细说明

授权声明:本篇文章授权活动官方亚马逊云科技文章转发、改写权,包括不限于在 Developer Centre, 知乎,自媒体平台,第三方开发者媒体等亚马逊云科技官方渠道 目录 前言、AWS 存储产品类别 1、Amazon Elastic Block Store (EBS) …

matplotlib violinplot换颜色

本来用的是箱图,后来发现这个图更好看,就想要学习一下,官方有给教程,当然可以直接学习 https://matplotlib.org/stable/gallery/statistics/customized_violin.html 以上是官方给的,效果是这个样子的 这个从最基本的蓝…

详解自动化之单元测试工具Junit

目录 1.注解 1.1 Test 1.2 BeforeEach 1.3 BeforeAll 1.4 AfterEach 1.5 AfterAll 2. 用例的执行顺序 通过 order() 注解来排序 3. 参数化 3.1 单参数 3.2 多参数 3.3 多参数(从第三方csv文件读取数据源) 3.4 动态参数ParameterizedTest MethodSource() 4. 测试…

解决vue element - ui 弹窗打开表单自动校验问题

1 打开弹窗清除自动校验 在data 里面把所有表单字段都定义一下 2 弹窗关闭事件 清除校验

Vue批量全局处理undefined和null转为““ 空字符串

我们在处理后台返回的信息,有的时候返回的是undefined或者null,这种字符串容易引起用户的误解,所以需要我们把这些字符串处理一下。 如果每个页面都单独处理,那么页面会很冗余,并且后期如果有修改容易遗漏&#xff0c…

Banana Pi BPI-R3 Mini 开源路由器,也能拍出艺术美感

香蕉派BPI-R3 Mini路由器板开发板采用联发科MT7986A(Filogic 830)四核ARM A53芯片设计,板载2G DDR 内存,8G eMMC和128MB SPI NAND存储,是一款非常高性能的开源路由器开发板,支持Wi-Fi6 2.4G/5G(MT7976C)&am…

ImportError: Unknown magic number 3495 in test.pyc

在进行pyc文件反编译时遇到如下报错: 这个问题是我们生成的pyc文件本身存在的问题 pyc文件生成时,头部的magic number被清理,需要我们另外补上。 我们先观察对比一下正确的pyc文件头与报错的pyc文件头: 正常的pyc文件 丢头部的…

开源之夏 2023 | Databend 社区项目总结与分享

开源之夏是由中科院软件所“开源软件供应链点亮计划”发起并长期支持的一项暑期开源活动,旨在鼓励在校学生积极参与开源软件的开发维护,培养和发掘更多优秀的开发者,促进优秀开源软件社区的蓬勃发展,助力开源软件供应链建设。 官…

requests库中解决字典值中列表在URL编码时的问题

本文将探讨 issue #80 中提出的技术问题及其解决方案。该问题主要涉及如何在模型的 _encode_params 方法中处理列表作为字典值的情况。 问题背景 在处理用户提交的数据时,有时需要将字典序列化为 URL 编码字符串。在 requests 库中,这个过程通常通过 pa…

java springboot测试类鉴定虚拟MVC运行值与预期值是否相同

好 上文java springboot在测试类中构建虚拟MVC环境并发送请求中 我们模拟的MVC环境 发送了一个请求 我们这次需要 对比 预期值和运行值是否一直 这里 我们要用一个 MockMvcResultMatchers 他提供了非常多的校验类型 例如 请求有没有成功 有没有包含请求头信息 等等 这里 我们做…

CSGO市场下跌分析,是跑还是入?

CSGO饰品下跌分析,是“跑”还是“入”? CSGO市场下跌分析,是跑还是入? 以下所有都是童话本人最近几年观察市场和踩坑的一点经验,由于篇幅不长所以肯定会很浅薄,大伙下嘴轻点 。 首先现在真的是CSGO市场最…

B站已经部分上线前台实名,如不同意实名,后期账号流量将收影响!

B站部分百万粉丝博主的主页显示账号运营人名字的政策是从10月31日开始的。当天,B站官方发布了《哔哩哔哩关于头部“自媒体”账号前台实名的公告》,表明了其前台实名制的实施计划。 B站部分上线前台实名的过程可以追溯到2021年。当时,中国政府…

网上找客户有什么渠道?

在数字化时代,企业和个体创业者需要善于利用互联网来拓展业务和寻找潜在客户。网上找客户的渠道多种多样,合理运用这些渠道可以极大地提高曝光和业务机会。以下是一些成功寻找客户的网上渠道: 1. 社交媒体平台 社交媒体已成为建立专业形象和…

AppLink结合金蝶云星空作订单信息同步流程

此次通过AppLink,根据请求数据金蝶云星空做销售订单信息同步拉取 在获取订单信息前需要得到金蝶云星空授权,详细授权步骤可查看:金蝶云星空授权指南 根据请求数据在金蝶云星空保存销售订单 当webhook接收到数据时触发流程 步骤1&#xff…

13、深度学习之神经网络

深度学习是机器学习中重要的一个学科分支,它的特点就在于需要构建多层“深度”的神经网络。 人们在探索人工智能初期,就曾设想构建一个用数学方式来表达的模型,它可以模拟人的大脑,大脑我们都知道,有很多神经元,每个神经元之间通过突触链接。 神经网络的设计就是模仿了这…

Youtube新手运营——你需要的技巧与工具

对于有跨境意向的内容创作者或者品牌企业来说,YouTube是因其巨大的潜在受众群和商业价值成为最值得投入变现与营销计划的平台。 据统计,98% 的美国人每月访问 YouTube,近三分之二的人每天访问。但是,YouTube还远未达到过度饱和的…

真菌基因组研究高分策略(一):比较基因组揭示真菌菌丝和多细胞的起源

真菌是陆地和水生生态系统的重要组分,在有机质循环和跨营养级养分流通等过程中发挥着重要作用。随着测序技术的发展,高通量测序揭示了真菌群落巨大的系统发育和功能多样性,高质量真菌基因组的组装已经成为研究菌丝和潜在基因的进化起源的有力…

分享五款可视化数据平台,零代码也能轻松上手!

今天给大家推荐五款市面上常见的可视化数据平台,不仅可以做日常的图表,制作可视化大屏也不在话下,考虑到一些非技术人员的需求,我把这些数据可视化平台分为代码类和零代码类,大家可以根据需要选择最合适自己的工具。 …

气死了,过五关,斩六将,结果被 HR 捅了一刀!!

Hello,大家好,我是 Sunday。 大家有没有遇到过这样的事情:“过五关,斩六将。通过了两轮、甚至是三轮的技术面,最后 HR 面被“捅死”了” 这样的事情,最近在一位同学身上连续出现了两次,弄得人…

12、人工智能、机器学习、深度学习的关系

很多年前听一个机器学习的公开课,在Q&A环节,一个同学问了老师一个问题“机器学习和深度学习是什么关系”? 老师先没回答,而是反问了在场的同学,结果问了2-3个,没有人可以回答的很到位,我当时也是初学一脸懵,会场准备的小礼品也没有拿到。 后来老师解释“机器学习和…