OFI libfabric原理及应用解析

Agenda 目录/议题

  • 编译通信软件
  • 硬件和软件带来的挑战
  • 为什么需要libfabric
  • libfabric架构
  • API分组
  • socket应用 VS libfabric应用区别
  • GPU数据传输示例

编译通信软件

  • 可靠面向连接的TCP和无连接的数据报UDP协议
  • 高性能计算HPC或人工智能AI

软硬件复杂性带来的挑战

  • 上千个节点的集群, 不同的网络类型(以太网, IB, 光纤等), 熊猫博士提到的CPU/GPU/XPU/IPU等等
  • xelink, nvlink, gpu
  • 软件库, 如nccl,intel mpi等
  • 所以咱们需要一个通用的通信库来桥接这些复杂的软硬件资源

libfabric来解决上面的问题

  • 统一API, 让程序员更轻松
  • 高性能和高可扩展性
  • 核心组件: 众多网卡提供者的库, 核心服务, 测试程序等

为什么需要libfabric

  • 承上启下, 桥接底层复杂多样的网络(socket, rdma, gpu, 共享内存等)和上层MPI, CCL, 共享内存等应用

socket编程与libfabric编程对比

  • 语义类似, 如获取信息, bind, connect等, 但是libfabric底层支持多种网络类型

支持GPU通信

  • gpu通信示例, 支持intel gpu, dpu, 或者其他供应商

架构与四种服务

  • 控制类: 发现底层设备, 属性, 能力等
  • 通信接口: 建立连接, 初始资源等
  • 数据传输: 发送和接收数据
  • 完成服务: 报告发送或接收状态

libfabric API分组

  • 整合底层提供者和上层开发者使用统一的API编程, 就像熊猫博士说的那样, 方便了提供者更方便的提供插件, 也方便了上层应用开发者

tcp socket 代码截图

socket收发数据示例

server端启动:./example_socket客户端连接和发送:./example_socket 192.168.5.6Hello server this is client.

example_socket.c 源码

#include <stdio.h>
#include <string.h>
#include <sys/socket.h>
#include <arpa/inet.h>

char *dst_addr = NULL;

int main(int argc, char *argv[])
{
    int socket_desc, client_sock, client_size;
    struct sockaddr_in server_addr, client_addr;
    char server_message[2000], client_message[2000];

    dst_addr = inet_addr(argv[1]);
    
    // Clean buffers:
    memset(server_message, '\0', sizeof(server_message));
    memset(client_message, '\0', sizeof(client_message));
    
    // Create socket:
    socket_desc = socket(AF_INET, SOCK_STREAM, 0);
    
    if(socket_desc < 0){
        printf("Error while creating socket\n");
        return -1;
    }
    printf("Socket created successfully\n");
    
    // Set port and IP:
    server_addr.sin_family = AF_INET;
    server_addr.sin_port = "43192";
    server_addr.sin_addr.s_addr = inet_addr("127.0.0.1");
    if (!dst_addr) {
    	// Bind to the set port and IP:
    	if(bind(socket_desc, (struct sockaddr*)&server_addr, sizeof(server_addr))<0){
    		printf("Couldn't bind to the port\n");
    		return -1;
    	}
    	printf("Binding complete\n");
    
    	// Listen for clients:
    	if(listen(socket_desc, 1) < 0){
        	printf("Error while listening\n");
        	return -1;
    	}
    	printf("Listening for incoming connections...\n");
    
    	// Accept an incoming connection:
    	client_size = sizeof(client_addr);
    	client_sock = accept(socket_desc, (struct sockaddr*)&client_addr, &client_size);
    
    	if (client_sock < 0){
        	printf("Can't accept\n");
        	return -1;
    	}
    	printf("Client connected at IP: %s and port: %i\n", inet_ntoa(client_addr.sin_addr), ntohs(client_addr.sin_port));
    
    	// Receive client's message:
    	if (recv(client_sock, client_message, sizeof(client_message), 0) < 0){
        	printf("Couldn't receive\n");
        	return -1;
    	}
    	printf("Msg from client: %s\n", client_message);
    
    	// Respond to client:
    	strcpy(server_message, "This is the server's message.");
    
    	if (send(client_sock, server_message, strlen(server_message), 0) < 0){
        	printf("Can't send\n");
        	return -1;
    	}
    }
    
    if (dst_addr) {
       // Send connection request to server:
       if(connect(socket_desc, (struct sockaddr*)&server_addr, sizeof(server_addr)) < 0){
	       printf("Unable to connect\n");
	       return -1;
       }
       printf("Connected with server successfully\n");

       // Get input from the user:
       printf("Enter message: ");
       gets(client_message);

       // Send the message to server:
       if(send(socket_desc, client_message, strlen(client_message), 0) < 0){
	       printf("Unable to send message\n");
	       return -1;
       }

       // Receive the server's response:
       if(recv(socket_desc, server_message, sizeof(server_message), 0) < 0){
	       printf("Error while receiving server's msg\n");
	       return -1;
       }
       printf("Server's response: %s\n",server_message);
    }
    
    // Close the client socket:
    close(client_sock);
    // Closing the server socket:
    close(socket_desc);

    return 0;
}

libfabric收发数据示例截图

服务端启动: ./example_msg客户端连接发送数据: ./example_msg 192.168.5.6
客户端连接发送数据: ./example_msg 192.168.5.6

参考代码

https://github.com/ssbandjl/libfabric/blob/main/fabtests/functional/example_msg.c
/*
 *
 * This software is available to you under the BSD license
 * below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <rdma/fabric.h>
#include <rdma/fi_domain.h>
#include <rdma/fi_endpoint.h>
#include <rdma/fi_cm.h>
#include <shared.h>

//Build with
//gcc -o example_msg example_msg.c -L<path to libfabric lib> -I<path to libfabric include> -lfabric
//gcc -o example_msg example_msg.c -L/home/xb/project/libfabric/libfabric/build/lib -I/home/xb/project/libfabric/libfabric/build/include -I/home/xb/project/libfabric/libfabric/build/include -lfabric

#define BUF_SIZE 64

char *dst_addr = NULL;
char *port = "9228";
struct fi_info *hints, *info, *fi_pep;
struct fid_fabric *fabric = NULL;
struct fid_domain *domain = NULL;
struct fid_ep *ep = NULL;
struct fid_pep *pep = NULL;
struct fid_cq *cq = NULL;
struct fid_eq *eq = NULL;
struct fi_cq_attr cq_attr = {0};
struct fi_eq_attr eq_attr = {
	.wait_obj = FI_WAIT_UNSPEC
};
//const struct sockaddr_in *sin;
char str_addr[INET_ADDRSTRLEN];
int ret;
char buffer[BUF_SIZE];
fi_addr_t fi_addr = FI_ADDR_UNSPEC;
struct fi_eq_cm_entry entry;
uint32_t event;
ssize_t rd;

/* Initializes all basic OFI resources to allow for a server/client to exchange a message */
static int start_client(void)
{

	ret = fi_getinfo(FI_VERSION(1,9), dst_addr, port, dst_addr ? 0 : FI_SOURCE,
			hints, &info);
	if (ret) {
	        printf("fi_getinfo: %d\n", ret);
	        return ret;
	}

	ret = fi_fabric(info->fabric_attr, &fabric, NULL);
	if (ret) {
		printf("fi_fabric: %d\n", ret);
        	return ret;
	}

	ret = fi_eq_open(fabric, &eq_attr, &eq, NULL);
	if (ret) {
	        printf("fi_eq_open: %d\n", ret);
	        return ret;
	}

	ret = fi_domain(fabric, info, &domain, NULL);
	if (ret) {
        	printf("fi_domain: %d\n", ret);
        	return ret;
        }

	/* Initialize our completion queue. Completion queues are used to report events associated
	 * with data transfers. In this example, we use one CQ that tracks sends and receives, but
	 * often times there will be separate CQs for sends and receives.
	 */
	cq_attr.size = 128;
	cq_attr.format = FI_CQ_FORMAT_MSG;
	ret = fi_cq_open(domain, &cq_attr, &cq, NULL);
	if (ret) {
		printf("fi_cq_open error (%d)\n", ret);
		return ret;
	}

	/* Bind our CQ to our endpoint to track any sends and receives that come in or out on that endpoint.
	 * A CQ can be bound to multiple endpoints but one EP can only have one send CQ and one receive CQ
	 * (which can be the same CQ).
	 */

	ret = fi_endpoint(domain, info, &ep, NULL);
	if (ret) {
	        printf("fi_endpoint: %d\n", ret);
	        return ret;
	}

	ret = fi_ep_bind(ep, &cq->fid, FI_SEND | FI_RECV);
        if (ret) {
            printf("fi_ep_bind cq error (%d)\n", ret);
            return ret;
        }

	ret = fi_ep_bind((ep), &(eq)->fid, 0);
	if (ret) {
		printf("fi_ep_bind: %d\n", ret);
		return ret;
	}

	ret = fi_enable(ep);
        if (ret) {
		printf("fi_enable: %d\n", ret);
	        return ret;
	}

	ret = fi_connect(ep, info->dest_addr, NULL, 0);
	if (ret) {
 	        printf("fi_connect: %d\n", ret);
 	        return ret;
	}

    rd = fi_eq_sread(eq, &event, &entry, sizeof(entry), -1, 0);
    if (rd != sizeof(entry)) {
        ret = (int) rd;
        printf("fi_eq_sread: %d\n", ret);
        return ret;
	}

	return 0;
}

static int start_server(void)
{
	const struct sockaddr_in *sin;

	/* The first OFI call to happen for initialization is fi_getinfo which queries libfabric
	 * and returns any appropriate providers that fulfill the hints requirements. Any applicable
	 * providers will be returned as a list of fi_info structs (&info). Any info can be selected.
	 * In this test we select the first fi_info struct. Assuming all hints were set appropriately,
	 * the first fi_info should be most appropriate.
	 * The flag FI_SOURCE is set for the server to indicate that the address/port refer to source
	 * information. This is not set for the client because the fields refer to the server, not
	 * the caller (client). */
	/* 初始化时发生的第一个 OFI 调用是 fi_getinfo,它查询 libfabric 并返回满足提示要求的任何适当的提供程序。 任何适用的提供程序都将作为 fi_info 结构 (&info) 列表返回。 可以选择任何信息。 在此测试中,我们选择第一个 fi_info 结构。 假设所有提示均已正确设置,第一个 fi_info 应该是最合适的。 为服务器设置标志FI_SOURCE以指示地址/端口引用源信息。 这不是为客户端设置的,因为这些字段引用服务器,而不是调用者(客户端) */
	ret = fi_getinfo(FI_VERSION(1,9), dst_addr, port, dst_addr ? 0 : FI_SOURCE,
			 		hints, &fi_pep);
	if (ret) {
		printf("fi_getinfo error (%d)\n", ret);
		return ret;
	}

	/* Initialize our fabric. The fabric network represents a collection of hardware and software
	 * resources that access a single physical or virtual network. All network ports on a system
	 * that can communicate with each other through their attached networks belong to the same fabric.
	 */
	ret = fi_fabric(fi_pep->fabric_attr, &fabric, NULL); // 打开fabric, 初始化任何资源前需要打开fabric
	if (ret) {
		printf("fi_fabric error (%d)\n", ret);
		return ret;
	}

	/* Initialize our endpoint. Endpoints are transport level communication portals which are used to
	 * initiate and drive communication. There are three main types of endpoints:
	 * FI_EP_MSG - connected, reliable
	 * FI_EP_RDM - unconnected, reliable
	 * FI_EP_DGRAM - unconnected, unreliable
	 * The type of endpoint will be requested in hints/fi_getinfo. Different providers support different
	 * types of endpoints. TCP supports only FI_EP_MSG but when used with RxM, can support FI_EP_RDM.
	 * In this application, we requested TCP and FI_EP_MSG.
	 */

    ret = fi_eq_open(fabric, &eq_attr, &eq, NULL); // 打开事件队列EQ, 一般用于建连, 收发数据产生的事件
    if (ret) {
            printf("fi_eq_open: %d\n", ret);
            return ret;
    }

    ret = fi_passive_ep(fabric, fi_pep, &pep, NULL); // 打开被动端点, 常用与服务端监听端口, 支持多个客户端domain连接进来
    if (ret) {
        printf("fi_passive_ep: %d\n", ret);
        return ret;
    }

    ret = fi_pep_bind(pep, &eq->fid, 0); // 为端点绑定事件队列
    if (ret) {
        printf("fi_pep_bind %d", ret);
        return ret;
    }

    ret = fi_listen(pep); // 监听端点, 等待客户端连接请求
    if (ret) {
        printf("fi_listen %d", ret);
        return ret;
    }

	return 0;
}

static int complete_connection(void)
{

	rd = fi_eq_sread(eq, &event, &entry, sizeof(entry), -1, 0); // 等待读取客户端触发的服务端事件, 读取事件, 推动进展(驱动程序运转)
    if (rd != sizeof entry) {
	ret = (int) rd;
            printf("fi_eq_sread: %d", ret);
		if (ret)
			goto err;
    }

	ret = fi_domain(fabric, info, &domain, NULL); // domain域用于将资源分组, 可基于域来做管理
	if (ret) {
		printf("fi_domain: %d\n", ret);
	        return ret;
        }

	ret = fi_domain_bind(domain, &eq->fid, 0);
	if (ret) {
	        printf("fi_domain_bind: %d\n", ret);
	        return ret;
	}

	/* 
	 * Initialize our completion queue. Completion queues are used to report events associated
         * with data transfers. In this example, we use one CQ that tracks sends and receives, but
         * often times there will be separate CQs for sends and receives.
	 */
    cq_attr.size = 128;
    cq_attr.format = FI_CQ_FORMAT_MSG;
    ret = fi_cq_open(domain, &cq_attr, &cq, NULL);
    if (ret) {
        printf("fi_cq_open error (%d)\n", ret);
        return ret;
    }

    /* Bind our CQ to our endpoint to track any sends and receives that 
	 * come in or out on that endpoint. A CQ can be bound to multiple
	 * endpoints but one EP can only have one send CQ and one receive CQ
     * (which can be the same CQ).
	*/

	ret = fi_endpoint(domain, info, &ep, NULL); // 用于客户端, 主动端点, 发起建连
        if (ret) {
                printf("fi_endpoint: %d\n", ret);
                return ret;
        }

	ret = fi_ep_bind(ep, &cq->fid, FI_SEND | FI_RECV);
        if (ret) {
                printf("fi_ep_bind cq error (%d)\n", ret);
                return ret;
        }

	ret = fi_ep_bind((ep), &(eq)->fid, 0);
        if (ret) {
                printf("fi_ep_bind: %d\n", ret);
                return ret;
        }

	ret = fi_enable(ep);
        if (ret) {
			printf("fi_enable: %d", ret);
            return ret;
		}

	ret = fi_accept(ep, NULL, 0);
	if (ret) {
	        printf("fi_accept: %d\n", ret);
	        return ret;
	}

	rd = fi_eq_sread(eq, &event, &entry, sizeof(entry), -1, 0);
	if (rd != sizeof(entry)) {
		ret = (int) rd;
		printf("fi_eq_read: %d\n", ret);
		return ret;
	}
    return 0;

err:
    if (info)
    	fi_reject(pep, info->handle, NULL, 0);
    return ret;

}

static void cleanup(void)
{
	int ret;
	
	/* All OFI resources are cleaned up using the same fi_close(fid) call. */
	if (ep) {
		ret = fi_close(&ep->fid);
		if (ret)
			printf("warning: error closing EP (%d)\n", ret);
	}
	if (pep) {
		ret = fi_close(&pep->fid);
		if (ret)
			printf("warning: error closing PEP (%d)\n", ret);
	}

	ret = fi_close(&cq->fid);
	if (ret)
		printf("warning: error closing CQ (%d)\n", ret);
	
	ret = fi_close(&domain->fid);
	if (ret)
		printf("warning: error closing domain (%d)\n", ret);

	ret = fi_close(&eq->fid);
        if (ret)
            printf("warning: error closing EQ (%d)\n", ret);

	ret = fi_close(&fabric->fid);
        if (ret)
            printf("warning: error closing fabric (%d)\n", ret);

	if (info)
		fi_freeinfo(info);

	if (fi_pep)
        fi_freeinfo(fi_pep);
}

/* Post a receive buffer. This call does not ensure a message has been received, just
 * that a buffer has been passed to OFI for the next message the provider receives.
 * Receives may be directed or undirected using the address parameter. Here, we
 * pass in the fi_addr but note that the server has not inserted the client's
 * address into its AV, so the address is still FI_ADDR_UNSPEC, indicating that
 * this buffer may receive incoming data from any address. An application may
 * set this to a real fi_addr if the buffer should only receive data from a certain
 * peer.
 * When posting a buffer, if the provider is not ready to process messages (because
 * of connection initialization for example), it may return -FI_EAGAIN. This does
 * not indicate an error, but rather that the application should try again later.
 * This is why we almost always wrap sends and receives in a do/while. Some providers
 * may need the application to drive progress in order to get out of the -FI_EAGAIN
 * loop. To drive progress, the application needs to call fi_cq_read (not necessarily
 * reading any completion entries).
 */
static int post_recv(void)
{
	int ret;

	do {
		ret = fi_recv(ep, buffer, BUF_SIZE, NULL, fi_addr, NULL);
		if (ret && ret != -FI_EAGAIN) {
			printf("error posting recv buffer (%d\n", ret);
			return ret;
		}
		if (ret == -FI_EAGAIN)
			(void) fi_cq_read(cq, NULL, 0);
	} while (ret);

	return 0;
}

/* Post a send buffer. This call does not ensure a message has been sent, just that
 * a buffer has been submitted to OFI to be sent. Unlike a receive buffer, a send
 * needs a valid fi_addr as input to tell the provider where to send the message.
 * Similar to the receive buffer posting porcess, when posting a send buffer, if the
 * provider is not ready to process messages, it may return -FI_EAGAIN. This does not
 * indicate an error, but rather that the application should try again later. Just like
 * the receive, we drive progress with fi_cq_read if this is the case.
 */
static int post_send(void)
{
	char *msg = "Hello, server! I am the client you've been waiting for!\0";
	int ret;

	(void) snprintf(buffer, BUF_SIZE, "%s", msg);

	do {
		ret = fi_send(ep, buffer, BUF_SIZE, NULL, fi_addr, NULL);
		if (ret && ret != -FI_EAGAIN) {
			printf("error posting send buffer (%d)\n", ret);
			return ret;
		}
		if (ret == -FI_EAGAIN)
			(void) fi_cq_read(cq, NULL, 0);
	} while (ret);

	return 0;
}

/* Wait for the message to be sent/received using the CQ. fi_cq_read not only drives progress
 * but also returns any completed events to notify the application that it can reuse
 * the send/recv buffer. The returned completion entry will have fields set to let the application
 * know what operation completed. Not all fields will be valid. The fields set will be indicated
 * by the cq format (when creating the CQ). In this example, we use FI_CQ_FORMAT_MSG in order to
 * use the flags field.
 */
static int wait_cq(void)
{
	struct fi_cq_err_entry comp;
	int ret;

	do {
		ret = fi_cq_read(cq, &comp, 1);
		if (ret < 0 && ret != -FI_EAGAIN) {
			printf("error reading cq (%d)\n", ret);
			return ret;
		}
	} while (ret != 1);

	if (comp.flags & FI_RECV)
		printf("I received a message!\n");
	else if (comp.flags & FI_SEND)
		printf("My message got sent!\n");

	return 0;
}

static int run(void)
{
	int ret;

	if (dst_addr) {
		printf("Client: send to server %s\n", dst_addr);

		ret = post_send();
		if (ret)
			return ret;

		ret = wait_cq();
		if (ret)
			return ret;

	} else {
		printf("Server: post buffer and wait for message from client\n");

		ret = post_recv();
		if (ret)
			return ret;

		ret = wait_cq();
		if (ret)
			return ret;

		printf("This is the message I received: %s\n", buffer);
	}
	return 1;
}

int main(int argc, char **argv)
{
	int ret;

	/* Hints are used to request support for specific features from a provider */
	hints = fi_allocinfo(); // 
	if (!hints)
		return EXIT_FAILURE;

	/* Server run with no args, client has server's address as an argument */
	dst_addr = argv[1];


//Set anything in hints that the application needs

	/* Request FI_EP_MSG (reliable datagram) endpoint which will allow us
	 * to reliably send messages to peers without having to listen/connect/accept. */
	hints->ep_attr->type = FI_EP_MSG; // 可靠数据报端点, 类似socket, 但无须执行listen/connect/accept

	/* Request basic messaging capabilities from the provider (no tag matching,
	 * no RMA, no atomic operations) */
	hints->caps = FI_MSG;

	/* Specifically request the tcp provider for the simple test */
	// hints->fabric_attr->prov_name = "tcp"; // 类似socket的, 面向连接的消息类型端点
 	hints->fabric_attr->prov_name = "ofi_rxm;verbs";

	/* Specifically request SOCKADDR_IN address format to simplify addressing for test */
	hints->addr_format = FI_SOCKADDR_IN;

	/* Default to FI_DELIVERY_COMPLETE which will make sure completions do not get generated
	 * until our message arrives at the destination. Otherwise, the client might get a completion
	 * and exit before the server receives the message. This is to make the test simpler */
	/* 默认为 FI_DELIVERY_COMPLETE,这将确保在我们的消息到达目的地之前不会生成完成(等待)。 否则,客户端可能会在服务器收到消息之前完成并退出。 这是为了让测试更简单 */
	hints->tx_attr->op_flags = FI_DELIVERY_COMPLETE;

//Done setting hints

	if (!dst_addr) {
		ret = start_server();
		if (ret) {
			goto out;
			return ret;
		}
	}

	ret = dst_addr ? start_client() : complete_connection();
	if (ret) {
		goto out;
		return ret;
	}

	ret = run();
out:
	cleanup();
	return ret;
}

socket vs libfabric消息类型示意图(两者都可完成建连和消息收发)

GPU数据传输示例

左边是内存直接访问DMA ibv verbs示例, 右边是DMA libfabric统一API的语义的示例

verbs
服务端: ./rdmabw-xe -m host
客户端: ./rdmabw-xe -m host -S 1 -t write 192.168.5.6  #都是用主机内存, 完成1字节的远程内存写操作

主机对主机GPU libfabric 内存直接访问DMA示例

libfabric, host -> host DMA
服务端: ./fi-rdmabw-xe -m host
客户端: ./fi-rdmabw-xe -m host -S 1 -t write 192.168.5.6  #都是用主机内存, 完成1字节的远程内存写操作
verbs 代码相对位置: fabtests/component/dmabuf-rdma/rdmabw-xe.c

主机发给GPU设备 内存直接访问DMA libfabric示例

libfabric GPU设备 -> host
服务端: ./fi-rdmabw-xe -m device #使用GPU设备的内存
客户端: ./fi-rdmabw-xe -m host -S 1 -t write 192.168.5.6  #用主机内存, 完成1字节的远程内存写操作
libfabric 代码相对位置: fabtests/component/dmabuf-rdma/fi-rdmabw-xe.c

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/176703.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【算法-哈希表4】 三数之和(去重版)

今天&#xff0c;带来哈希相关算法的讲解。文中不足错漏之处望请斧正&#xff01; 理论基础点这里 三数之和 分析题意 这就是三数之和去重版嘛。 题意转化 求三元组, 满足每个元素相加为0&#xff0c;其中每个元素下标不同&#xff1b;而得到的三元组不能重复。 构成三元…

【20年扬大真题】删除字符串s中的所有空格

【20年扬大真题】 删除字符串s中的所有空格 代码思路&#xff1a; 可以定义一个辅助的字符数组tmp&#xff0c;一边遍历字符串s&#xff0c;一边用tmp暂存s中的非空格元素。 遍历完s之后&#xff0c;再把tmp中的元素赋给字符串s即可 #include<stdio.h> #define MaxSize…

栈和队列【详解】

目录 一、栈 1.栈的定义 2.栈的初始化 3.入栈 4.出栈 5.获取栈顶元素 6.获取栈元素的个数 7.判断栈是否为空 8.销毁栈 二、队列 1.队列的定义 2.入队 3.出队 4.获取队头元素 5.获取队尾元素 6.判断队列是否为空 7.获取队列的元素个数 8.销毁队列 前言&#xf…

el-input限制输入整数等分析

文章目录 前言1、在 Vue 中&#xff0c;可以使用以下几种方式来限制 el-input 只能输入整数1.1 设置input 的 type为number1.2 使用inputmode1.3 使用自定义指令1.4 使用计算属性1.5 使用 onafterpaste ,onkeyup1.6 el-input-number 的precision属性 总结 前言 input 限制输入…

python命令行交互 引导用户输入一个数字

代码 以下代码将在命令行中&#xff0c;引导用户选择一个数字&#xff0c;并反馈用户输入的值 # -*- coding:UTF-8 -*- """ author: dyy contact: douyaoyuan126.com time: 2023/11/22 15:51 file: 引导用户输入一个数字.py desc: xxxxxx """#…

D. Absolute Beauty - 思维

题面 分析 补题。配上题解的图&#xff0c;理解了很长时间&#xff0c;思维还需要提高。 对于每一对 a i a_i ai​和 b i b_i bi​&#xff0c;可以看作一个线段的左右端点&#xff0c;这是关键的一步&#xff0c;那么他们的绝对值就是线段的长度&#xff0c;对于线段相对位…

C++ MiniZip实现目录压缩与解压

Zlib是一个开源的数据压缩库&#xff0c;提供了一种通用的数据压缩和解压缩算法。它最初由Jean-Loup Gailly和Mark Adler开发&#xff0c;旨在成为一个高效、轻量级的压缩库&#xff0c;其被广泛应用于许多领域&#xff0c;包括网络通信、文件压缩、数据库系统等。其压缩算法是…

Doris数据模型的选择建议(十三)

Doris 的数据模型主要分为 3 类&#xff1a;Aggregate、Uniq、Duplicate Aggregate: Doris 数据模型-Aggregate 模型 Uniq&#xff1a;Doris 数据模型-Uniq 模型 Duplicate&#xff1a;Doris 数据模型-Duplicate 模型 因为数据模型在建表时就已经确定&#xff0c;且无法修改…

焦炉加热系统简述

烟道吸力 焦炉负压烘炉分烟道的吸力会影响立火道温度&#xff0c;具体影响因素如下&#xff1a; 烟道吸力过大会导致热量被抽走&#xff0c;使立火道温度降低。烟道吸力不足会导致烟气在烘炉内停留时间过长&#xff0c;使热量无法充分利用&#xff0c;也会导致立火道温度降低…

安防监控视频融合平台EasyCVR定制化页面开发

安防监控EasyCVR视频汇聚平台基于云边端智能协同&#xff0c;支持海量视频的轻量化接入与汇聚、转码与处理、全网智能分发、视频集中存储等。安防视频平台EasyCVR拓展性强&#xff0c;视频能力丰富&#xff0c;具体可实现视频监控直播、视频轮播、视频录像、云存储、回放与检索…

元素的点击操作

元素的点击操作 .click 语法 // 单击某个元素 .click()// 带参数的单击 .click(options)// 在某个位置点击 .click(position)// 在某个位置点击&#xff0c;且带参数 .click(position, options)// 根据页面坐标点击 .click(x, y)// 根据页面坐标点击&#xff0c;且带参数 .c…

冷链运输车辆GPS定位及温湿度管理案例

1.项目背景 项目名称&#xff1a;山西冷链运输车辆GPS定位及温湿度管理案例 项目需求&#xff1a;随着经济发展带动物流行业快速发展&#xff0c;运输规模逐步扩大&#xff0c;集团为了适应高速发展的行业现象&#xff0c;物流管理系统的完善成了现阶段发展的重中之重。因此&…

Elasticsearch:FMA 风格的向量相似度计算

作者&#xff1a;Chris Hegarty 在 Lucene 9.7.0 中&#xff0c;我们添加了利用 SIMD 指令执行向量相似性计算的数据并行化的支持。 现在&#xff0c;我们通过使用融合乘加 (Fused Mulitply-Add - FMA) 进一步推动这一点。 什么是 FMA 乘法和加法是一种常见的运算&#xff0c;…

echarts实现如下图功能代码

这里写自定义目录标题 const option {tooltip: {trigger: axis},legend: {left: "-1px",top:15px,type: "scroll",icon:rect,data: [{name:1, textStyle:{color: theme?"#E5EAF3":#303133,fontSize:14}}, {name: 2, textStyle:{color: theme…

超详细 | 实验室linux服务器非root账号 | 安装pip | 安装conda

登录实验室公用服务器&#xff0c;个人账号下&#xff08;非root&#xff09;是空的&#xff0c;啥也没有&#xff0c;想安装下pip和conda。 转了一圈&#xff0c;好像没太有针对这个需求写具体博客的&#xff0c;但有挺多讲直接在root下安的&#xff08;用的应该是个人虚拟机&…

【面试HOT300】滑动窗口篇

系列综述&#xff1a; &#x1f49e;目的&#xff1a;本系列是个人整理为了秋招面试的&#xff0c;整理期间苛求每个知识点&#xff0c;平衡理解简易度与深入程度。 &#x1f970;来源&#xff1a;材料主要源于【CodeTopHot300】进行的&#xff0c;每个知识点的修正和深入主要参…

【Vue】生命周期一文详解

目录 前言 生命周期 钩子函数使用方法 ​编辑 周期-----创建阶段 创建阶段做了些什么事 该阶段可以干什么 周期----挂载阶段 挂载阶段做了什么事 该阶段适合干什么 周期----更新阶段 更新阶段做了什么事 该阶段适合做什么 周期----销毁阶段 销毁阶段做了什么事 …

图解系列--密钥,随机数,应用技术

密钥 1.生成密钥 1.1.用随机数生成密钥 密码学用途的伪随机数生成器必须是专门针对密码学用途而设计的。 1.2.用口令生成密钥 一般都是将口令输入单向散列函数&#xff0c;然后将得到的散列值作为密钥使用。 在使用口令生成密钥时&#xff0c;为了防止字典攻击&#xff0c;需要…

【追求卓越13】算法--深度和广度优先算法

引导 前面的几个章节&#xff0c;我们介绍了树这种数据结构&#xff0c;二叉搜索树在进行查找方面比较高效&#xff1b;有二叉树演变来的堆数据结构在处理优先级队列&#xff0c;top K&#xff0c;中位数等问题比较优秀&#xff1b;今天我们继续介绍新的数据结构——图。它在解…