SpringCloud 微服务全栈体系(十六)

第十一章 分布式搜索引擎 elasticsearch

六、DSL 查询文档

  • elasticsearch 的查询依然是基于 JSON 风格的 DSL 来实现的。

1. DSL 查询分类

  • Elasticsearch 提供了基于 JSON 的 DSL(Domain Specific Language)来定义查询。常见的查询类型包括:

    • 查询所有:查询出所有数据,一般测试用。例如:match_all

    • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:

      • match_query
      • multi_match_query
    • 精确查询:根据精确词条值查找数据,一般是查找 keyword、数值、日期、boolean 等类型字段。例如:

      • ids
      • range
      • term
    • 地理(geo)查询:根据经纬度查询。例如:

      • geo_distance
      • geo_bounding_box
    • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:

      • bool
      • function_score
  • 查询的语法基本一致:

GET /indexName/_search
{
  "query": {
    "查询类型": {
      "查询条件": "条件值"
    }
  }
}
  • 以查询所有为例,其中:

    • 查询类型为 match_all
    • 没有查询条件
// 查询所有
GET /indexName/_search
{
  "query": {
    "match_all": {
    }
  }
}
  • 其它查询无非就是查询类型查询条件的变化。

2. 全文检索查询

2.1 使用场景
  • 全文检索查询的基本流程如下:

    • 对用户搜索的内容做分词,得到词条
    • 根据词条去倒排索引库中匹配,得到文档 id
    • 根据文档 id 找到文档,返回给用户
  • 比较常用的场景包括:

    • 商城的输入框搜索
    • 百度输入框搜索
  • 例如京东:

在这里插入图片描述

  • 因为是拿着词条去匹配,因此参与搜索的字段也必须是可分词的 text 类型的字段。
2.2 基本语法
  • 常见的全文检索查询包括:

    • match 查询:单字段查询
    • multi_match 查询:多字段查询,任意一个字段符合条件就算符合查询条件
  • match 查询语法如下:

GET /indexName/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT"
    }
  }
}
  • mulit_match 语法如下:
GET /indexName/_search
{
  "query": {
    "multi_match": {
      "query": "TEXT",
      "fields": ["FIELD1", " FIELD12"]
    }
  }
}
2.3 示例
  • match 查询示例:

在这里插入图片描述

  • multi_match 查询和 match 查询结果是一样的。

  • 因为我们将 brand、name、business 值都利用 copy_to 复制到了 all 字段中。因此你根据三个字段搜索,和根据 all 字段搜索效果当然一样了。

  • 但是,搜索字段越多,对查询性能影响越大,因此建议采用 copy_to,然后单字段查询的方式。

2.4.总结
  • match 和 multi_match 的区别是什么?

    • match:根据一个字段查询
    • multi_match:根据多个字段查询,参与查询字段越多,查询性能越差

3. 精准查询

  • 精确查询一般是查找 keyword、数值、日期、boolean 等类型字段。所以不会对搜索条件分词。常见的有:

    • term:根据词条精确值查询
    • range:根据值的范围查询
3.1 term 查询
  • 因为精确查询的字段是搜不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。

  • 语法说明:

// term查询
GET /indexName/_search
{
  "query": {
    "term": {
      "FIELD": {
        "value": "VALUE"
      }
    }
  }
}
3.2 range 查询
  • 范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。

  • 基本语法:

// range查询
GET /indexName/_search
{
  "query": {
    "range": {
      "FIELD": {
        "gte": 10, // 这里的gte代表大于等于,gt则代表大于
        "lte": 20 // lte代表小于等于,lt则代表小于
      }
    }
  }
}
  • 示例:

在这里插入图片描述

3.3 总结
  • 精确查询常见的有哪些?

    • term 查询:根据词条精确匹配,一般搜索 keyword 类型、数值类型、布尔类型、日期类型字段
    • range 查询:根据数值范围查询,可以是数值、日期的范围

4. 地理坐标查询

  • 所谓的地理坐标查询,其实就是根据经纬度查询,官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-queries.html

  • 常见的使用场景包括:

    • 携程:搜索我附近的酒店
    • 滴滴:搜索我附近的出租车
    • 微信:搜索我附近的人
4.1 矩形范围查询
  • 矩形范围查询,也就是 geo_bounding_box 查询,查询坐标落在某个矩形范围的所有文档

  • 查询时,需要指定矩形的左上右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。

  • 语法如下:

// geo_bounding_box查询
GET /indexName/_search
{
  "query": {
    "geo_bounding_box": {
      "FIELD": {
        "top_left": { // 左上点
          "lat": 31.1,
          "lon": 121.5
        },
        "bottom_right": { // 右下点
          "lat": 30.9,
          "lon": 121.7
        }
      }
    }
  }
}
4.2 附近查询
  • 附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。

  • 换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件

  • 语法说明:

// geo_distance 查询
GET /indexName/_search
{
  "query": {
    "geo_distance": {
      "distance": "15km", // 半径
      "FIELD": "31.21,121.5" // 圆心
    }
  }
}

5. 复合查询

  • 复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:

    • fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名
    • bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索
5.1 相关性算分
  • 当我们利用 match 查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。

  • 例如,我们搜索 “虹桥如家”,结果如下:

[
  {
    "_score" : 17.850193,
    "_source" : {
      "name" : "虹桥如家酒店真不错",
    }
  },
  {
    "_score" : 12.259849,
    "_source" : {
      "name" : "外滩如家酒店真不错",
    }
  },
  {
    "_score" : 11.91091,
    "_source" : {
      "name" : "迪士尼如家酒店真不错",
    }
  }
]
  • 在 elasticsearch 中,早期使用的打分算法是 TF-IDF 算法,公式如下:

在这里插入图片描述

  • 在后来的 5.1 版本升级中,elasticsearch 将算法改进为 BM25 算法,公式如下:

在这里插入图片描述

  • TF-IDF 算法有一个缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而 BM25 则会让单个词条的算分有一个上限,曲线更加平滑:

在这里插入图片描述

  • 小结:elasticsearch 会根据词条和文档的相关度做打分,算法由两种:

    • TF-IDF 算法
    • BM25 算法,elasticsearch5.1 版本后采用的算法
5.2 算分函数查询
  • 根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。

  • 以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。如图:

在这里插入图片描述

  • 要想人为控制相关性算分,就需要利用 elasticsearch 中的 function score 查询了。
5.2.1 语法说明

在这里插入图片描述

  • function score 查询中包含四部分内容:

    • 原始查询条件:query 部分,基于这个条件搜索文档,并且基于 BM25 算法给文档打分,原始算分(query score)
    • 过滤条件:filter 部分,符合该条件的文档才会重新算分
    • 算分函数:符合 filter 条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
      • weight:函数结果是常量
      • field_value_factor:以文档中的某个字段值作为函数结果
      • random_score:以随机数作为函数结果
      • script_score:自定义算分函数算法
    • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
      • multiply:相乘
      • replace:用 function score 替换 query score
      • 其它,例如:sum、avg、max、min
  • function score 的运行流程如下:

    • 根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
    • 根据过滤条件,过滤文档
    • 符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
    • 原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。
  • 因此,其中的关键点是:

    • 过滤条件:决定哪些文档的算分被修改
    • 算分函数:决定函数算分的算法
    • 运算模式:决定最终算分结果
5.2.2 示例
  • 需求:给“如家”这个品牌的酒店排名靠前一些

  • 翻译一下这个需求,转换为之前说的四个要点:

    • 原始条件:不确定,可以任意变化
    • 过滤条件:brand = “如家”
    • 算分函数:可以简单粗暴,直接给固定的算分结果,weight
    • 运算模式:比如求和
  • 因此最终的 DSL 语句如下:

GET /hotel/_search
{
  "query": {
    "function_score": {
      "query": {  .... }, // 原始查询,可以是任意条件
      "functions": [ // 算分函数
        {
          "filter": { // 满足的条件,品牌必须是如家
            "term": {
              "brand": "如家"
            }
          },
          "weight": 2 // 算分权重为2
        }
      ],
      "boost_mode": "sum" // 加权模式,求和
    }
  }
}
  • 测试,在未添加算分函数时,如家得分如下:

在这里插入图片描述

  • 添加了算分函数后,如家得分就提升了:

在这里插入图片描述

5.2.3 小结
  • function score query 定义的三要素是什么?

    • 过滤条件:哪些文档要加分
    • 算分函数:如何计算 function score
    • 加权方式:function score 与 query score 如何运算
5.3 布尔查询
  • 布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:

    • must:必须匹配每个子查询,类似“与”
    • should:选择性匹配子查询,类似“或”
    • must_not:必须不匹配,不参与算分,类似“非”
    • filter:必须匹配,不参与算分
  • 比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤。

请添加图片描述

  • 每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用 bool 查询了。

  • 需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:

    • 搜索框的关键字搜索,是全文检索查询,使用 must 查询,参与算分
    • 其它过滤条件,采用 filter 查询。不参与算分
5.3.1 语法示例
GET /hotel/_search
{
  "query": {
    "bool": {
      "must": [
        {"term": {"city": "上海" }}
      ],
      "should": [
        {"term": {"brand": "皇冠假日" }},
        {"term": {"brand": "华美达" }}
      ],
      "must_not": [
        { "range": { "price": { "lte": 500 } }}
      ],
      "filter": [
        { "range": {"score": { "gte": 45 } }}
      ]
    }
  }
}
5.3.2 示例
  • 需求:搜索名字包含“如家”,价格不高于 400,在坐标 31.21,121.5 周围 10km 范围内的酒店。

  • 分析:

    • 名称搜索,属于全文检索查询,应该参与算分。放到 must 中
    • 价格不高于 400,用 range 查询,属于过滤条件,不参与算分。放到 must_not 中
    • 周围 10km 范围内,用 geo_distance 查询,属于过滤条件,不参与算分。放到 filter 中

在这里插入图片描述

5.3.3 小结
  • bool 查询有几种逻辑关系?

    • must:必须匹配的条件,可以理解为“与”
    • should:选择性匹配的条件,可以理解为“或”
    • must_not:必须不匹配的条件,不参与打分
    • filter:必须匹配的条件,不参与打分

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/175291.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

初学者必读书籍——两个月速成Python

想学Python的你是不是一直被它生涩难懂的劝退?作为一个自学入门的程序员,依靠这样几本书,两个月就学会了python。不卖关子,我学的就是”python编程三剑客“系列。那么接下来就让我给你介绍介绍吧。 1.《Python编程:从入…

解析生成式人工智能 | 它真的有这么强大吗?

原创 | 文 BFT机器人 当人们说“生成式人工智能”时,你知道这代表着什么意思吗?为什么这些系统似乎正在覆盖所有涉及联想的应用程序?近日,麻省理工学院的人工智能专家帮助剖析了这种日益流行且无处不在的技术。 当你快速浏览一下头…

如何看待程序员领域内的“内卷”现象?

要搞清楚这个问题,我首先就来阐释一下“内卷”的概念。 内卷本身是从一个学术名词演化为网络流行词的,本是指文化模式因达到某种最终形态,既无法保持稳定也不能转化为更高级的新形态,而只能在这种文化模式内部无限变得复杂的现象。…

HTML+CSS+ElementUI搭建个人博客静态页面展示(纯前端)

网站演示 搭建过程 技术选取 HTML/CSSVUE2ElementUI(Version - 2.15.14) 环境配置与搭建 安装指令 1. 先确保你的电脑已经安装好了npm和node npm -vnode -v2. ElementUI下载&#xff0c;推荐使用 npm 的方式安装 npm i element-ui -S3. CDN引入 <!-- 引入样式 --> <…

Redis 与其他数据库的不同之处 | Navicat

Redis&#xff0c;即远程字典服务器&#xff08;Remote Dictionary Server&#xff09;&#xff0c;它是一个多功能且高性能的键值存储系统&#xff0c;在数据库领域中已获得广泛关注和认可。在处理简单数据结构方面&#xff0c;它因其快速和高效而著称。本文中&#xff0c;我们…

基于高质量训练数据,GPT-4 Turbo更出色更强大

11月7日消息&#xff0c;OpenAI在首届开发者大会上正式推出了GPT-4 Turbo。 与GPT-4相比&#xff0c;GPT-4 Turbo主要有6方面的提升&#xff1a; 1、扩展下文对话长度&#xff1a;GPT4最大只能支持8k的上下文长度&#xff08;约等于6000个单词&#xff09;&#xff0c;而GPT-4…

SOLIDWORKS实用技巧——工程图模板替换

概述 工程师常在出图时选择最佳模板&#xff0c;在编辑一段时间后&#xff0c;发现需要更改图纸大小&#xff0c;怎样更改图纸大小还不影响现有工作。你是否也有此类问题&#xff1f; 那么&#xff0c;新建工程图时的模板从哪里来&#xff1f;如何轻松替换已有工程图的图纸格…

你还记得你常用的数据库有哪些吗?

接上文&#xff0c;常用数据库有哪些 Oracle 开发厂商&#xff1a;甲骨文公司 最新版本&#xff1a;Oracle Database 19c&#xff08;长期支持版&#xff09;、Oracle Database 21c&#xff08;创新版&#xff0c;已生产可用&#xff09; 发行方式: 商业软件&#xff08;Comme…

swagger的ApiImplicitParam注解中的required属性不起作用

问题的发现 如上两图&#xff0c;在接口中使用了’ApiImplicitParam’注解&#xff0c;仅指定了一个参数是必填&#xff0c;但是通过swagger文档查看三个参数均不能为空。 原因探究 最终确定到因为在RequestParam中也有一个required属性&#xff0c;用于指定是否必填。swagge…

ERP对接淘宝/天猫/京东/拼多多商品详情数据API接口

引言 今天&#xff0c;我们时代变化非常快&#xff0c;传统行业做法&#xff0c;已经无法完全适应时代的发展。互联网的发展&#xff0c;造成了一股网购热。京东&#xff0c;天猫&#xff0c;淘宝&#xff0c;易购……网购&#xff0c;给我们生活带来了方便&#xff0c;消费者…

系统试运行方案

系统试运行的目的&#xff1a; 试运行目的通过既定时间段的试运行&#xff0c;全面考察项目建设成果。并通过试运行发现项目存在的问题&#xff0c;从而进一步完善项目建设内容&#xff0c;确保项目顺利通过竣工验收并平稳地移交给运行管理单位。通过实际运行中系统功能与性能的…

股票基础数据(二)

二. 股票基础数据 文章目录 二. 股票基础数据一. 查询股票融资信息数据二. 查询所有的股票信息三. 查询所有的股票类型信息四. 根据类型查询所有的股票数据信息五. 查询股票当前的基本信息六. 查询股票的K线图, 返回对应的 base64 信息七. 展示股票的K线图数据, 对应的是数据信…

Go 异常处理流程

在 Go 语言中&#xff0c;panic、recover 和 defer 是用于处理异常情况的关键字。它们通常一起使用来实现对程序错误的处理和恢复。 1. defer 语句 defer 用于在函数返回之前执行一段代码。被 defer 修饰的语句或函数会在包含 defer 的函数执行完毕后执行。defer 常用于资源清…

服务器 jupyter 文件名乱码问题

对于本台电脑&#xff0c;autodl服务器&#xff0c;上传中文文件时&#xff0c;从压缩包名到压缩包里的文件名先后会出现中文乱码的问题。 Xftp 首先是通过Xftp传输压缩包到Autodl服务器&#xff1a; 1、打开Xftp&#xff0c;进入软件主界面&#xff0c;点击右上角【文件】菜…

Nacos升级2.2.2 相关版本升级及升级中问题【下篇】

上篇对nacos进行了升级&#xff0c;如果有不清楚的小伙伴可以参考文章&#xff1a;https://blog.csdn.net/weixin_38801572/article/details/130237813 本篇主要是对升级后的鉴权问题进行处理&#xff0c;找了好多的文章都是添加username、password操作&#xff0c;但是实际操作…

8.3 Windows驱动开发:内核遍历文件或目录

在笔者前一篇文章《内核文件读写系列函数》简单的介绍了内核中如何对文件进行基本的读写操作&#xff0c;本章我们将实现内核下遍历文件或目录这一功能&#xff0c;该功能的实现需要依赖于ZwQueryDirectoryFile这个内核API函数来实现&#xff0c;该函数可返回给定文件句柄指定的…

足底筋膜炎症状及治疗方法

足底筋膜炎是一种常见的足部疾病&#xff0c;通常会引起足跟疼痛和不适。这种疼痛通常在早晨起床后或者长时间休息后更为明显&#xff0c;行走一段时间后可能会减轻。下面我们将详细介绍足底筋膜炎的症状及治疗方法。 一、足底筋膜炎的症状 足跟疼痛&#xff1a;这是足底筋膜…

Avalonia 实现简单的IM即时通讯、视频通话(源码,支持国产系统,统信、银河麒麟)

Avalonia 在跨平台上的表现非常出色&#xff0c;对信创国产操作系统&#xff08;像银河麒麟、统信UOS、Deepin等&#xff09;也很不错。现在&#xff0c;我们就来使用 Avalonia 实现一个跨平台的简单IM&#xff0c;除了文字聊天外&#xff0c;还可以语音视频通话。废话不多说&a…

B032-服务器 Tomcat JavaWeb项目 Servlet

目录 服务器服务器的认识 Tomcat服务器Tomcat服务器的介绍Tomcat的安装Tomcat报错的情况Tomcat要启动成功的条件 JavaWeb项目Web的项目结构发布项目的第一种方式发布项目的第二种方式 Eclipse中搭建动态Web项目eclipse安装Tomcat插件servletservlet示例servlet的执行流程servle…

MySql 计算同比、环比

一、理论 国家统计局同比、环比计算公式 增长速度是反映经济社会某一领域发展变化情况的重要数据&#xff0c;而同比和环比是反映增长速度最基础、最核心的数据指标&#xff0c;也是国际上通用的指标。在统计中&#xff0c; 同比和环比通常是同比变化率和环比变化率的简称&…