数据结构与算法之美学习笔记:24 | 二叉树基础(下):有了如此高效的散列表,为什么还需要二叉树?

目录

  • 前言
  • 二叉查找树(Binary Search Tree)
  • 二叉查找树的时间复杂度分析
  • 解答开篇
  • 内容小结

前言

在这里插入图片描述
本节课程思维导图:
在这里插入图片描述
二叉查找树最大的特点就是,支持动态数据集合的快速插入、删除、查找操作。我们之前说过,散列表也是支持这些操作的,并且散列表的这些操作比二叉查找树更高效,时间复杂度是 O(1)。既然有了这么高效的散列表,使用二叉树的地方是不是都可以替换成散列表呢?有没有哪些地方是散列表做不了,必须要用二叉树来做的呢?

二叉查找树(Binary Search Tree)

二叉查找树是二叉树中最常用的一种类型,也叫二叉搜索树。顾名思义,二叉查找树是为了实现快速查找而生的。不过,它不仅仅支持快速查找一个数据,还支持快速插入、删除一个数据。
二叉查找树要求,在树中的任意一个节点,其左子树中的每个节点的值,都要小于这个节点的值,而右子树节点的值都大于这个节点的值。
在这里插入图片描述
二叉查找树支持快速查找、插入、删除操作,现在我们就依次来看下,这三个操作是如何实现的。

  1. 二叉查找树的查找操作
    首先,我们看如何在二叉查找树中查找一个节点。我们先取根节点,如果它等于我们要查找的数据,那就返回。如果要查找的数据比根节点的值小,那就在左子树中递归查找;如果要查找的数据比根节点的值大,那就在右子树中递归查找。
    在这里插入图片描述
    代码:
public class BinarySearchTree {
  private Node tree;

  public Node find(int data) {
    Node p = tree;
    while (p != null) {
      if (data < p.data) p = p.left;
      else if (data > p.data) p = p.right;
      else return p;
    }
    return null;
  }

  public static class Node {
    private int data;
    private Node left;
    private Node right;

    public Node(int data) {
      this.data = data;
    }
  }
}
  1. 二叉查找树的插入操作
    二叉查找树的插入过程有点类似查找操作。新插入的数据一般都是在叶子节点上,所以我们只需要从根节点开始,依次比较要插入的数据和节点的大小关系。如果要插入的数据比节点的数据大,并且节点的右子树为空,就将新数据直接插到右子节点的位置;如果不为空,就再递归遍历右子树,查找插入位置。同理,如果要插入的数据比节点数值小,并且节点的左子树为空,就将新数据插入到左子节点的位置;如果不为空,就再递归遍历左子树,查找插入位置。
    在这里插入图片描述
    代码:
public void insert(int data) {
  if (tree == null) {
    tree = new Node(data);
    return;
  }

  Node p = tree;
  while (p != null) {
    if (data > p.data) {
      if (p.right == null) {
        p.right = new Node(data);
        return;
      }
      p = p.right;
    } else { // data < p.data
      if (p.left == null) {
        p.left = new Node(data);
        return;
      }
      p = p.left;
    }
  }
}
  1. 二叉查找树的删除操作
    针对要删除节点的子节点个数的不同,我们需要分三种情况来处理。
    第一种情况是,如果要删除的节点没有子节点,我们只需要直接将父节点中,指向要删除节点的指针置为 null。比如图中的删除节点 55。
    第二种情况是,如果要删除的节点只有一个子节点(只有左子节点或者右子节点),我们只需要更新父节点中,指向要删除节点的指针,让它指向要删除节点的子节点就可以了。比如图中的删除节点 13。
    第三种情况是,如果要删除的节点有两个子节点,这就比较复杂了。我们需要找到这个节点的右子树中的最小节点,把它替换到要删除的节点上。然后再删除掉这个最小节点,因为最小节点肯定没有左子节点(如果有左子结点,那就不是最小节点了),所以,我们可以应用上面两条规则来删除这个最小节点。比如图中的删除节点 18。
    在这里插入图片描述
  2. 二叉查找树的其他操作
    除了插入、删除、查找操作之外,二叉查找树中还可以支持快速地查找最大节点和最小节点、前驱节点和后继节点。
    还有一个重要的特性,就是中序遍历二叉查找树,可以输出有序的数据序列,时间复杂度是 O(n),非常高效。因此,二叉查找树也叫作二叉排序树。

二叉查找树的时间复杂度分析

我们来分析一下,二叉查找树的插入、删除、查找操作的时间复杂度。
实际上,二叉查找树的形态各式各样。它们的查找、插入、删除操作的执行效率都是不一样的。下图二叉查找树,根节点的左右子树极度不平衡,已经退化成了链表,所以查找的时间复杂度就变成了 O(n)。
在这里插入图片描述
我们现在来分析一个最理想的情况,二叉查找树是一棵完全二叉树(或满二叉树)。这个时候,插入、删除、查找的时间复杂度是多少呢?

不管操作是插入、删除还是查找,时间复杂度其实都跟树的高度成正比,也就是 O(height)。既然这样,现在问题就转变成另外一个了,也就是,如何求一棵包含 n 个节点的完全二叉树的高度?

树的高度就等于最大层数减一,为了方便计算,我们转换成层来表示。从图中可以看出,包含 n 个节点的完全二叉树中,第一层包含 1 个节点,第二层包含 2 个节点,第三层包含 4 个节点,依次类推,下面一层节点个数是上一层的 2 倍,第 K 层包含的节点个数就是 2^(K-1)。不过,对于完全二叉树来说,最后一层的节点个数有点儿不遵守上面的规律了。它包含的节点个数在 1 个到 2^(L-1) 个之间(我们假设最大层数是 L)。如果我们把每一层的节点个数加起来就是总的节点个数 n。也就是说,如果节点的个数是 n,那么 n 满足这样一个关系:

n >= 1+2+4+8+...+2^(L-2)+1
n <= 1+2+4+8+...+2^(L-2)+2^(L-1)

借助等比数列的求和公式,我们可以计算出,L 的范围是[log2(n+1), log2n +1]。完全二叉树的层数小于等于 log2n +1,也就是说,完全二叉树的高度小于等于 log2n。
显然,极度不平衡的二叉查找树,它的查找性能肯定不能满足我们的需求。我们需要构建一种不管怎么删除、插入数据,在任何时候,都能保持任意节点左右子树都比较平衡的二叉查找树,一种特殊的二叉查找树,平衡二叉查找树。平衡二叉查找树的高度接近 logn,所以插入、删除、查找操作的时间复杂度也比较稳定,是 O(logn)。

解答开篇

散列表的插入、删除、查找操作的时间复杂度可以做到常量级的 O(1),非常高效。而二叉查找树在比较平衡的情况下,插入、删除、查找操作时间复杂度才是 O(logn),相对散列表,好像并没有什么优势,那我们为什么还要用二叉查找树呢?
我认为有下面几个原因:
第一,散列表中的数据是无序存储的,如果要输出有序的数据,需要先进行排序。而对于二叉查找树来说,我们只需要中序遍历,就可以在 O(n) 的时间复杂度内,输出有序的数据序列。

第二,散列表扩容耗时很多,而且当遇到散列冲突时,性能不稳定,尽管二叉查找树的性能不稳定,但是在工程中,我们最常用的平衡二叉查找树的性能非常稳定,时间复杂度稳定在 O(logn)。

第三,笼统地来说,尽管散列表的查找等操作的时间复杂度是常量级的,但因为哈希冲突的存在,这个常量不一定比 logn 小,所以实际的查找速度可能不一定比 O(logn) 快。加上哈希函数的耗时,也不一定就比平衡二叉查找树的效率高。

第四,散列表的构造比二叉查找树要复杂,需要考虑的东西很多。比如散列函数的设计、冲突解决办法、扩容、缩容等。平衡二叉查找树只需要考虑平衡性这一个问题,而且这个问题的解决方案比较成熟、固定。

最后,为了避免过多的散列冲突,散列表装载因子不能太大,特别是基于开放寻址法解决冲突的散列表,不然会浪费一定的存储空间。综合这几点,平衡二叉查找树在某些方面还是优于散列表的,所以,这两者的存在并不冲突。我们在实际的开发过程中,需要结合具体的需求来选择使用哪一个。

内容小结

二叉查找树。它支持快速地查找、插入、删除操作。二叉查找树中,每个节点的值都大于左子树节点的值,小于右子树节点的值。

在二叉查找树中,查找、插入、删除等很多操作的时间复杂度都跟树的高度成正比。两个极端情况的时间复杂度分别是 O(n) 和 O(logn),分别对应二叉树退化成链表的情况和完全二叉树。为了避免时间复杂度的退化,针对二叉查找树,我们又设计了一种更加复杂的树,平衡二叉查找树,时间复杂度可以做到稳定的 O(logn)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/172517.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

idea中的sout、psvm快捷键输入,不要太好用了

目录 一、操作环境 二、psvm、sout 操作介绍 2.1 psvm&#xff0c;快捷生成main方法 2.2 sout&#xff0c;快捷生成打印方法 三、探索 psvm、sout 底层逻辑 一、操作环境 语言&#xff1a;Java 工具&#xff1a; 二、psvm、sout 操作介绍 2.1 psvm&#xff0c;快捷生成m…

SpringCloud原理-OpenFeign篇(三、FeignClient的动态代理原理)

文章目录 前言正文一、前戏&#xff0c;FeignClientFactoryBean入口方法的分析1.1 从BeanFactory入手1.2 AbstractBeanFactory#doGetBean(...)中对FactoryBean的处理1.3 结论 FactoryBean#getObject() 二、FeignClientFactoryBean实现的getObject()2.1 FeignClientFactoryBean#…

Flutter笔记:使用相机

Flutter笔记 使用相机 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/qq_28550263/article/details/134493373 【简介】本文介绍在 Fl…

用VS编译ROS包

扩展安装 在扩展中搜索并安装ROS、C、python、CMake和CMake Tools。 打开工作空间 文件→打开文件夹 新建功能包 右键src文件夹&#xff0c;选择新建功能包&#xff08;通常是最后一条命令&#xff09; 编译 如果需要新建终端的话&#xff0c;就点击下图中的加号 创建la…

Git 笔记之gitignore

解释为&#xff1a;git ignore 即&#xff0c;此类型的文件将会被忽略掉&#xff0c;从而不会进行管理 具体的模板可以从 GitHub 网站上来进行设置 GitHub - github/gitignore: A collection of useful .gitignore templates Common_gitignore: gitignoregithub开源项目&…

Spring-IOC-@Value和@PropertySource用法

1、Book.java PropertySource(value"classpath:配置文件地址") 替代 <context:property-placeholder location"配置文件地址"/> Value("${book.bid}") Value("${book.bname}") Value("${book.price}") <bean id&…

C++ STL -->string类

文章目录 STL什么是STL String类string类对象的构造方式string类对象的容量操作string类对象的访问及遍历操作string迭代器函数遍历类对象 stirng类对象的修改操作string类非成员函数 STL 什么是STL STL全称standard template libaray-标准模板库 是C标准库的重要组成部分 不…

枚举 小蓝的漆房

题目 思路 核心思想是枚举 首先利用set记录每一种颜色 然后依次从set取出一种颜色作为targetColor&#xff0c;遍历房子 如果当前房子的颜色和targetColor不相同&#xff0c;就以当前房子为起点&#xff0c;往后长度为k的区间都涂成targetColor&#xff0c;并且需要的天数递增…

华为云cce健康检查有什么用?配置需要注意什么?

华为云cce健康检查 如上图&#xff0c;华为云健康检查可用来探测cce的实例运行状态&#xff0c;必要时cce会自动重启实例&#xff0c;达到cce持续服务。 但是配置时需要注意一下几个方面&#xff0c;否则cce的状态总是有些不正常。 1、http探查比较友好。因为我们的在cce里面…

深入理解强化学习——马尔可夫决策过程:马尔可夫决策过程和马尔可夫过程/马尔可夫奖励过程的区别

分类目录&#xff1a;《深入理解强化学习》总目录 《深入理解强化学习——马尔可夫决策过程》系列前面的文章讨论到的马尔可夫过程和马尔可夫奖励过程都是自发改变的随机过程&#xff0c;而如果有一个外界的“刺激”来共同改变这个随机过程&#xff0c;就有了马尔可夫决策过程&…

【ctfshow】web入门-信息搜集-web11~20

【ctfshow】web入门-信息搜集-web11~17 web11_域名其实也可以隐藏信息&#xff0c;比如flag.ctfshow.com 就隐藏了一条信息web12_有时候网站上的公开信息&#xff0c;就是管理员常用密码web13_技术文档里面不要出现敏感信息&#xff0c;部署到生产环境后及时修改默认密码web14_…

构建和应用卡尔曼滤波器 (KF)--扩展卡尔曼滤波器 (EKF)

作为一名数据科学家&#xff0c;我们偶尔会遇到需要对趋势进行建模以预测未来值的情况。虽然人们倾向于关注基于统计或机器学习的算法&#xff0c;但我在这里提出一个不同的选择&#xff1a;卡尔曼滤波器&#xff08;KF&#xff09;。 1960 年代初期&#xff0c;Rudolf E. Kal…

低代码服务商,中小型数字化软件服务商的新出路

数字化时代大背景下&#xff0c;企业信息化向数字化转型成为所有企业发展的必由之路&#xff0c;企业在对业务模式、流程、组织形式、信息技术等方面进行重新定义时&#xff0c;软件必然参与价值创造的全过程&#xff0c;这势必驱使软件成为推动数字化转型的“引擎”&#xff0…

Motion Plan之搜索算法笔记

背景&#xff1a; 16-18年做过一阵子无人驾驶&#xff0c;那时候痴迷于移动规划&#xff1b;然而当时可学习的资料非常少&#xff0c;网上的论文也不算太多。基本就是Darpa的几十篇无人越野几次比赛的文章&#xff0c;基本没有成系统的文章和代码讲解实现。所以对移动规划的认…

React结合antd5实现整个表格编辑

通过react hooks 结合antd的table实现整个表格新增编辑。 引入组件依赖 import React, { useState } from react; import { Table, InputNumber, Button, Space, Input } from antd;定义数据 const originData [{ key: 1, name: 白银会员, value: 0, equity: 0, reward: 0…

PHP中isset() empty() is_null()的区别

在PHP中&#xff0c;isset()、empty()和is_null()是用于检查变量状态的三个不同的函数。它们分别用于检查变量是否已设置、是否为空以及是否为null。在本文中&#xff0c;我们将详细解释这三个函数的用法、区别和适当的使用场景。 isset(): isset()函数用于检查一个变量是否已…

MSTP配置示例

多生成树可以实现链路的防环、冗余备份、负载均衡功能 拓朴如下&#xff1a; 主要配置如下&#xff1a; [R1] interface GigabitEthernet0/0/1ip address 10.1.1.254 255.255.255.0 # interface GigabitEthernet0/0/2ip address 10.2.2.254 255.255.255.0 #[S1] interface …

如何利用CHATGPT写主题文章

问CHAT&#xff1a;新课标下畅言智慧课堂助力小学生量感培养&#xff0c;拟解决的关键问题 CHAT回复&#xff1a; 1. 确定智慧课堂在新课标下的正确应用方法&#xff1a;新课标对教育方法、内容等提出了新的要求&#xff0c;需要探讨如何将智慧课堂与新课标相结合&#xff0c;…

学习Rust适合写什么练手项目?【云驻共创】

Rust是一门备受关注的系统级编程语言&#xff0c;因其出色的内存安全性、高性能和并发性能而备受赞誉。对于那些希望学习和掌握Rust编程语言的人来说&#xff0c;练手项目是一个不可或缺的环节。通过实际动手完成项目&#xff0c;你可以加深对Rust语言特性和最佳实践的理解&…

JOSEF约瑟 数显电压继电器 HYJY-30-02 AC220V 导轨安装

HYJY系列电压继电器 HYJY-30-01集成电路电压继电器 HYJY-30-01A HYJY-30-01B HYJY-30-02集成电路电压继电器 HYJY-30-02A HYJY-30-02B HYJY-30-03-3集成电路电压继电器 HYJY-30-03-2 HYJY-30-03-1 HYJY-30-02电压继电器&#xff08;以下简称继电器&#xff09;用于发…