基于混沌博弈算法优化概率神经网络PNN的分类预测 - 附代码

基于混沌博弈算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于混沌博弈算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于混沌博弈优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用混沌博弈算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于混沌博弈优化的PNN网络

混沌博弈算法原理请参考:https://blog.csdn.net/u011835903/article/details/121564341

利用混沌博弈算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

混沌博弈参数设置如下:

%% 混沌博弈参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述

从结果来看,混沌博弈-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/170130.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

二分查找——34. 在排序数组中查找元素的第一个和最后一个位置

文章目录 1. 题目2. 算法原理2.1 暴力解法2.2 二分查找左端点查找右端点查找 3. 代码实现4. 二分模板 1. 题目 题目链接:34. 在排序数组中查找元素的第一个和最后一个位置 - 力扣(LeetCode) 给你一个按照非递减顺序排列的整数数组 nums&#…

python实战—核心基础2(数字大小写转换) lv1

目录 一、核心代码解释 二、代码 三、运行截图 一、核心代码解释 1、range函数 函数语法:range(start, stop[, step]) 参数说明: start: 计数从 start 开始。默认是从 0 开始。例如range(5)等价于range(0&#x…

11.15 监控目录文件变化

监视对指定目录的更改,并将有关更改的信息打印到控制台,该功能的实现不仅可以在内核层,在应用层同样可以。程序中使用ReadDirectoryChangesW函数来监视目录中的更改,并使用FILE_NOTIFY_INFORMATION结构来获取有关更改的信息。 Re…

【Java】线程状态

1、线程状态 初始-NEW: Thread : 对象已经创建,但start 方法还没调用. 终止-TERMINATED: Thread 对象还在,内核中的线程已经没了 运行-RUNNABLE: 就绪状态(线程已经在 cpu 上执行了/线程正在排队等待上 cpu 执行) 超时等待-TIMED WAITING: 阻塞.由于 sleep 这种固定…

从暗黑3D火炬之光技能系统说到-Laya非入门教学一~资源管理

我不知道那些喷Laya没有浏览器,嘲笑别人编辑器做不好,是什么水平? 首先目前国内除了WPS和飞书,就没有第三家公司能把编辑器做好。 要是一般的游戏开发者,如我,有一点点引擎代码(某项目&#x…

时间序列预测实战(十七)PyTorch实现LSTM-GRU模型长期预测并可视化结果(附代码+数据集+详细讲解)

一、本文介绍 本文给大家带来的实战内容是利用PyTorch实现LSTM-GRU模型,LSTM和GRU都分别是RNN中最常用Cell之一,也都是时间序列预测中最常见的结构单元之一,本文的内容将会从实战的角度带你分析LSTM和GRU的机制和效果,同时如果你…

铝合金钻孔铣削去毛刺加工之高速电主轴解决方案

铝合金是一种轻质、高强度的材料,其出色的机械性能和良好的导电性、导热性使其在工业领域广受青睐特别是在航空、航天和汽车制造中,铝合金的身影更是随处可见。在铝合金加工过程中,高速电主轴可精准而高效地完成钻孔、铣削和去毛刺等任务&…

贪吃蛇游戏制作

首先在ecilsp里面创建两个包,启动和图形界面 在创建一个文件夹用来放图片 1.绘制图形界面 package com.snaketuxing.view;import java.awt.Color; import java.awt.EventQueue; import java.awt.Font; import java.awt.Frame; import java.awt.Graphics; import …

go语言的某些开发素质真低,完全就是缺教养。

我本人在github提过一个错误处理的提案,2023年11月20日微信公众号“脑子进煎鱼了” 记录了这个提案,在评论区有个微信名为:【hello哥已开始躺平】的微信用户一来就喷粪,这种人到底是欠打呢还是心理变态呢?对别人的提案…

docker更换国内源

docker更换国内源 1、编辑Docker配置文件 在终端中执行以下命令,编辑Docker配置文件: vi /etc/docker/daemon.json2、添加更新源 在打开的配置文件中,添加以下内容: {"registry-mirrors": ["https://hub-mirror…

yum 搭建仓库 http/ftp

目录 http ftp http 服务端 1. 下载 httpd 服务,记得将防火墙和安全终端全部关掉 2. 开启 httpd 服务 3. 临时挂载 客户端 1. 下载 httpd 服务,记得将防火墙和安全终端全部关掉 2. 开启 httpd 服务 3. 进入 /etc/yum.repos.d 4. 新建一个目录 mhy&…

【洛谷 P3743】kotori的设备 题解(二分答案+循环)

kotori的设备 题目背景 kotori 有 n n n 个可同时使用的设备。 题目描述 第 i i i 个设备每秒消耗 a i a_i ai​ 个单位能量。能量的使用是连续的,也就是说能量不是某时刻突然消耗的,而是匀速消耗。也就是说,对于任意实数,…

Vue3 源码解读系列(九)——依赖注入

依赖注入 依赖注入用于祖先组件向后代组件传递数据。 特点: 祖先组件不需要知道哪些后代组件在使用它提供的数据。 后代组件也不需要知道注入的数据来自哪里。 /*** provide 的实现*/ function provide(key, value) {let provides currentInstance.provides // 当…

【Linux】软连接和硬链接:创建、管理和解除链接的操作

文章目录 1. 软链接和硬链接简介2. Linux软链接使用方法3. Linux硬链接使用方法4. 总结 1. 软链接和硬链接简介 什么是软链接 软链接(Symbolic Link),也称为符号链接,是包含了源文件位置信息的特殊文件。它的作用是间接指向一个文件或目录。如果软链接的源文件被删除或移动了,软…

【论文阅读笔记】Deep learning for time series classification: a review

【论文阅读笔记】Deep learning for time series classification: a review 摘要 在这篇文章中,作者通过对TSC的最新DNN架构进行实证研究,探讨了深度学习算法在TSC中的当前最新性能。文章提供了对DNNs在TSC的统一分类体系下在各种时间序列领域中的最成功…

智慧化工园区信息化整体解决方案:PPT全53页,附下载

关键词:智慧化工园区建设方案,智慧化工园区建设规范,智慧化工园区建设指南 一、售智慧化工园区建设背景 随着工业化、信息化和数字化进程的加速,化工园区面临着越来越多的挑战,如安全生产、环境保护、能源消耗等问题…

[架构之路-247]:目标系统 - 设计方法 - 软件工程 - 结构化方法的基本思想、本质、特点以及在软件开发、在生活中的应用

目录 前言: 一、什么是非结构化方法 1.1 什么是非结构化方法 1.2 非结构化方法的适用场合 二、什么是结构化方法 1.1 结构化方法诞生的背景:软件规模发展:大规模、复杂系统的需要 1.2 概述 1.3 主要特点与核心思想 三、结构化方法在…

【C#二开业务冠邑】通过界面查看数据来源

前言 重构框架(CS【C#】转BS【Java】)时,突然发现公司的代码和数据库,有部分都没有写注释,嘎嘎,这不非常影响开发效率,于是乎,开始帮公司整理表结构和数据来源,也从而加…

ISP--Black Level Correction(黑电平矫正)

图像的每一个像素点都是由一个光电二极管控制的,由二极管将电信号,转换为数字信号。 那么,我们知道了,图像的像素值是与电信号强度相关的。但是,我们得知道,每一个光电二极管要想工作,都得有一定…

异步爬取+多线程+redis构建一个运转丝滑且免费http-ip代理池 (三)

内容提要: 如果说,爬取网页数据的时候,我们使用了异步,那么将数据放入redis里面,其实也需要进行异步;当然,如果使用多线程或者redis线程池技术也是可以的,但那会造成冗余; 因此,在测试完多线程redis搭配异步爬虫的时候,我发现效率直接在redis这里被无限拉低下来! 因此: 最终的r…