【LSTM】北京pm2.5 天气预测--pytorch版本,有代码可以跑通-LSTM回归问题,工程落地一网打尽

文章目录

  • 前言
  • 1. 知识理解
    • 1.1 核心理解
    • 1.2 原理
      • 1.2.1 图解LSTM
      • 1.2.1 分词
      • 1.2.1 英语的词表示
      • 1.2.2 中文的词表示
      • 1.2.3 构建词表
  • 2. 工程代码
    • 2.1 数据预处理
    • 2.2 数据集&模型构建
    • 2.3 模型训练
    • 2.4 保持模型&加载模型&预测


前言

LSTM 少分析原理,更强调工程落地,今年年初有两篇LSTM的回归文章,是keras实现的。
《【LSTM】LSTM预测股票价格–单因素、多步、输出单步回归特征 -keras 1》https://blog.csdn.net/weixin_40293999/article/details/128635150
《【LSTM】多因素单步骤预测-keras 2》http://t.csdnimg.cn/vRmMe


LSTM:做回归预测的几个应用。

1. 知识理解

1.1 核心理解

核心点:m个步长,n个因素,预测p个步长q个因素。
用前一天的日均温,预测当前天的日均温度—>1 步长 1 因素 预测 1步长 1因素
用前一天的日均温、光照时长、风速、湿度预测当前天的日均温–>1 步长 4因素 预测 1步长 1因素
用前一天的 光照时长、风速、湿度预测当前天的日均温–>1 步长 3因素 预测 1步长 1因素
用前7天的 光照时长、风速、湿度预测后三天的日均温–> 7步长 3因素 预测 3步长 1因素
用前7天的 光照时长、风速、湿度预测后三天的日均温、光照时长、风速、湿度–> 7步长 3因素 预测 3步长 4因素
通过以上的例子,相信你就能明白lstm做回归任务,能做什么。

关于其原理,自行搜索下其它人的讲解即可。本篇主要讲落地细节。

1.2 原理

1.2.1 图解LSTM

原理 ref: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
RNN:
在这里插入图片描述
在这里插入图片描述
LSTM:
在这里插入图片描述
这张图挺好理解的:这个简洁来说就像个全加器一样,输出和进位都靠上一位的进位和本位的输入,挺好理解的

问题:特征 x1, x2,…xt 这t个x 对应的是什么?
就是一组特征向量,比如可以使7天的温度【一维向量 7】,也可以是7天的多维向量温度、湿度【二维向量 7X2】

1.2.1 分词

温度/湿度本身就是数字,但是若是影评数据呢?比如 当幸福来敲门的台词:
You got a dream, you gotta protect it. Dont ever let somebody tell you, you can’t do something. Not even me. People can’t do something themselves, they wanna tell you,you can’t do it.
1)去标点 2)转成全小写 3)按 “ ”【空格】分词

s = "You got a dream, you gotta protect it. Dont ever let somebody tell you, you can't  do something. Not even me. People can't do something themselves, they wanna tell you,you can't do it."
import string
print("punctuation::",string.punctuation)
for c in string.punctuation:
    s = s.replace(c,' ').lower()
print("after deal with punctuation::",s)
punctuation:: !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~
after deal with punctuation:: you got a dream  you gotta protect it  dont ever let somebody tell you  you can t  do something  not even me  people can t do something themselves  they wanna tell you you can t do it 
np.unique(s.split())
array(['a', 'can', 'do', 'dont', 'dream', 'even', 'ever', 'got', 'gotta',
       'it', 'let', 'me', 'not', 'people', 'protect', 'somebody',
       'something', 't', 'tell', 'themselves', 'they', 'wanna', 'you'],
      dtype='<U10')

然后把这些词挨个变成映射【字典】,再用100维的张量表示每一个单词即可。

1.2.1 英语的词表示

这里说的特征就是数字类的,而不是文本类的比如影评、商品评价、外卖评价等等。
多啰嗦一句,其实一个英文影评(同步类比外卖、商品评价)的单词数量,就是 x1,x2,…xt, 对应的是t个单词。但是torch只能计算,只能存储float,int…等数字类型的tensor,你这个文本算个啥,所以需要将英语表示为【数字】特征,也就是词表示【word representation】,通常使用词嵌入【word embedding】的方式。每个单词可以表示为n维度,比如200,这个可以自定义,也可以用预训练的。

1.2.2 中文的词表示

1.2.1 说清楚了英文的词表示,那么中文呢,中文和英语其实极为相似,但是最大的不同是,英语很好分词,因为天然的空格存在,按空格分词【token】,再词表示就可以,中文没空咋给一句话【一段话】分词呢?用个插件jieba即可。
例子:

jieba.lcut("你说过两天来看我,转眼就是一年多!")
['你', '说', '过', '两天', '来看', '我', ',', '转眼', '就是', '一年', '多', '!']

1.2.3 构建词表

所以无论中英文,都需要构建词表,也就是分好词的所有词的list,比如所用影评分好词后的unique词是3W个,那么我们实际上就有一个len=3W的词表,
但通常还需要另外的两个词和。因为数据对齐的问题,比如我们就想让一条评论是200【多少的长度是自己定的】个单词。 那多了,就截断了,少的就用填充。
另外,还需要一个注意点,就是从set【集合】的角度看,词表有3W个,但里面可能有只出现过1次的,他们可能是生僻词,或者拼写错误的,没啥具体含义。所以,做映射的时候,可能制取词频>=10的。那么没取到的,就被映射为unknow了。
然后,再用1.2的词表示。 这样,一条评论。最终就是 200个单词, 每个单词用100维的向量【数字】来表示。这样就和1.1的原理完全对上了。

2. 工程代码

2.1 数据预处理

在这里插入图片描述
pandas 读取数据,并完成预处理
No year month day hour pm2.5 DEWP TEMP PRES cbwd Iws Is Ir
0 1 2010 1 1 0 NaN -21 -11.0 1021.0 NW 1.79 0 0
1 2 2010 1 1 1 NaN -21 -12.0 1020.0 NW 4.92 0 0
2 3 2010 1 1 2 NaN -21 -11.0 1019.0 NW 6.71 0 0
3 4 2010 1 1 3 NaN -21 -14.0 1019.0 NW 9.84 0 0
4 5 2010 1 1 4 NaN -20 -12.0 1018.0 NW 12.97 0 0

数据处理:把PM2.5 为null的数据都用相邻的数据填充,我们取2010年1月2日以后的数据。

data = data.iloc[24:].bfill()
print(data[0:5])

在这里插入图片描述
把年,月,日 和小时 合并为一列。

import datetime
data['time'] = data.apply(lambda x: datetime.datetime(year=x['year'],month =x['month'],day = x['day'],hour = x['hour']),axis = 1)
    No  year  month  day  hour  pm2.5  DEWP  TEMP    PRES cbwd   Iws  Is  Ir                time
24  25  2010      1    2     0  129.0   -16  -4.0  1020.0   SE  1.79   0   0 2010-01-02 00:00:00
25  26  2010      1    2     1  148.0   -15  -4.0  1020.0   SE  2.68   0   0 2010-01-02 01:00:00
26  27  2010      1    2     2  159.0   -11  -5.0  1021.0   SE  3.57   0   0 2010-01-02 02:00:00
27  28  2010      1    2     3  181.0    -7  -5.0  1022.0   SE  5.36   1   0 2010-01-02 03:00:00
28  29  2010      1    2     4  138.0    -7  -5.0  1022.0   SE  6.25   2   0 2010-01-02 04:00:

去掉 年,月,日 和小时,并且把 时间列 作为索引index

data.drop(columns=['No','year','month','day','hour'],inplace = True)
data = data.set_index('time')
                     pm2.5  DEWP  TEMP    PRES cbwd   Iws  Is  Ir
time
2010-01-02 00:00:00  129.0   -16  -4.0  1020.0   SE  1.79   0   0
2010-01-02 01:00:00  148.0   -15  -4.0  1020.0   SE  2.68   0   0
2010-01-02 02:00:00  159.0   -11  -5.0  1021.0   SE  3.57   0   0
2010-01-02 03:00:00  181.0    -7  -5.0  1022.0   SE  5.36   1   0
2010-01-02 04:00:00  138.0    -7  -5.0  1022.0   SE  6.25   2   0

One-hot 编码 风向序列

data = data.join(pd.get_dummies(data.cbwd))
del data['cbwd']
                     pm2.5  DEWP  TEMP    PRES   Iws  Is  Ir     NE     NW    SE     cv
time
2010-01-02 00:00:00  129.0   -16  -4.0  1020.0  1.79   0   0  False  False  True  False
2010-01-02 01:00:00  148.0   -15  -4.0  1020.0  2.68   0   0  False  False  True  False
2010-01-02 02:00:00  159.0   -11  -5.0  1021.0  3.57   0   0  False  False  True  False
2010-01-02 03:00:00  181.0    -7  -5.0  1022.0  5.36   1   0  False  False  True  False
2010-01-02 04:00:00  138.0    -7  -5.0  1022.0  6.25   2   0  False  False  True  False

查看2012年到2014年的数据

data['pm2.5'][-365*24:].plot()
data['pm2.5'][-365*24*2:-365*24].plot()
data['pm2.5'][-365*24*3:-365*24*2].plot()

在这里插入图片描述
用前6天的数据预测第7天的大气PM2.5

sequence_length = 6*24
delay = 24
data_ = []
for i in range(len(data) - sequence_length - delay):
    data_.append(data.iloc[i: i + sequence_length + delay])
data_ = np.array([df.values for df in data_])
np.random.shuffle(data_)
x = data_[:, :-delay, :]
y = data_[:, -1, 0]

把数据的80%分成训练集合,20%分为测试集合。

split_boundary = int(data_.shape[0] * 0.8)
train_x = x[: split_boundary]
test_x = x[split_boundary:]

train_y = y[: split_boundary]
test_y = y[split_boundary:]

对数据标准化

mean = train_x.mean(axis=0) #均值
std = train_x.std(axis=0) #标准差
train_x = (train_x - mean)/std
test_x = (test_x - mean)/std

2.2 数据集&模型构建


class Mydataset(torch.utils.data.Dataset):
    def __init__(self, features, labels):
        self.features = features
        self.labels = labels
        
    def __getitem__(self, index):
        feature = self.features[index]
        label = self.labels[index]
        return feature, label

    def __len__(self):
        return len(self.features)
train_ds = Mydataset(train_x, train_y)
test_ds = Mydataset(test_x, test_y)
BTACH_SIZE = 128
train_dl = torch.utils.data.DataLoader(
                                       train_ds,
                                       batch_size=BTACH_SIZE,
                                       shuffle=True
)
test_dl = torch.utils.data.DataLoader(
                                       test_ds,
                                       batch_size=BTACH_SIZE
)

构建模型

hidden_size = 64
class Net(nn.Module):
    def __init__(self, hidden_size):
        super(Net, self).__init__()
        self.rnn = nn.LSTM(train_x.shape[-1], 
                           hidden_size, 
                           batch_first=True)
        self.fc1 = nn.Linear(hidden_size, 128)
        self.fc2 = nn.Linear(128, 1)

    def forward(self, inputs):
        _, s_o = self.rnn(inputs)
        s_o = s_o[-1]
        x = F.dropout(F.relu(self.fc1(s_o)))
        x = self.fc2(x)
        return torch.squeeze(x)
model = Net(hidden_size)
if torch.cuda.is_available():
    model.to('cuda')

构建损失和优化函数


loss_fn = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

2.3 模型训练

训练过程

def fit(epoch, model, trainloader, testloader):
    total = 0
    running_loss = 0
    
    model.train()
    for x, y in trainloader:
        if torch.cuda.is_available():
            x, y = x.to('cuda'), y.to('cuda')
        y_pred = model(x)
        loss = loss_fn(y_pred, y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        with torch.no_grad():
            total += y.size(0)
            running_loss += loss.item()
#    exp_lr_scheduler.step()
    epoch_loss = running_loss / len(trainloader.dataset)
        
        
    test_total = 0
    test_running_loss = 0 
    
    model.eval()
    with torch.no_grad():
        for x, y in testloader:
            if torch.cuda.is_available():
                x, y = x.to('cuda'), y.to('cuda')
            y_pred = model(x)
            loss = loss_fn(y_pred, y)
            test_total += y.size(0)
            test_running_loss += loss.item()
    
    epoch_test_loss = test_running_loss / len(testloader.dataset)
    
        
    print('epoch: ', epoch, 
          'loss: ', round(epoch_loss, 3),
          'test_loss: ', round(epoch_test_loss, 3),
             )
        
    return epoch_loss, epoch_test_loss

epochs = 100
train_loss = []
test_loss = []

for epoch in range(epochs):
    epoch_loss, epoch_test_loss = fit(epoch,
                                      model,
                                      train_dl,
                                      test_dl)
    train_loss.append(epoch_loss)
    test_loss.append(epoch_test_loss)

训练过程loss


epoch:  0 loss:  23.613 test_loss:  25.115
epoch:  1 loss:  23.081 test_loss:  24.546
epoch:  2 loss:  22.261 test_loss:  23.605
epoch:  3 loss:  21.603 test_loss:  23.745
epoch:  4 loss:  21.623 test_loss:  24.013
epoch:  5 loss:  21.449 test_loss:  24.356
epoch:  6 loss:  21.052 test_loss:  22.461
epoch:  7 loss:  21.267 test_loss:  24.883
epoch:  8 loss:  21.083 test_loss:  21.641
epoch:  9 loss:  20.027 test_loss:  24.942
epoch:  10 loss:  19.944 test_loss:  20.995
epoch:  11 loss:  20.05 test_loss:  23.553
epoch:  12 loss:  30.013 test_loss:  29.03
epoch:  13 loss:  23.522 test_loss:  22.274
epoch:  14 loss:  20.181 test_loss:  21.099
epoch:  15 loss:  19.553 test_loss:  20.401
epoch:  16 loss:  18.925 test_loss:  21.033
epoch:  17 loss:  18.798 test_loss:  19.627
epoch:  18 loss:  19.772 test_loss:  20.952
epoch:  19 loss:  19.922 test_loss:  20.91
epoch:  20 loss:  19.068 test_loss:  20.825
epoch:  21 loss:  18.103 test_loss:  19.203
epoch:  22 loss:  19.176 test_loss:  20.891
epoch:  23 loss:  17.713 test_loss:  19.167
epoch:  24 loss:  17.063 test_loss:  18.672
epoch:  25 loss:  19.715 test_loss:  23.334
epoch:  26 loss:  21.586 test_loss:  20.307
epoch:  27 loss:  18.127 test_loss:  19.236
epoch:  28 loss:  16.943 test_loss:  18.996
epoch:  29 loss:  17.403 test_loss:  19.15
epoch:  30 loss:  16.35 test_loss:  18.142
epoch:  31 loss:  16.166 test_loss:  18.056
epoch:  32 loss:  16.363 test_loss:  20.465
epoch:  33 loss:  16.122 test_loss:  17.937
epoch:  34 loss:  15.48 test_loss:  17.128
epoch:  35 loss:  17.159 test_loss:  19.565
epoch:  36 loss:  18.402 test_loss:  22.737
epoch:  37 loss:  17.671 test_loss:  19.016
epoch:  38 loss:  16.368 test_loss:  17.944
epoch:  39 loss:  15.901 test_loss:  18.256
epoch:  40 loss:  15.695 test_loss:  18.299
epoch:  41 loss:  15.447 test_loss:  16.485
epoch:  42 loss:  14.995 test_loss:  16.351
epoch:  43 loss:  14.906 test_loss:  17.371
epoch:  44 loss:  14.784 test_loss:  16.312
epoch:  45 loss:  15.204 test_loss:  17.165
epoch:  46 loss:  15.076 test_loss:  16.702
epoch:  47 loss:  14.528 test_loss:  15.929
epoch:  48 loss:  14.185 test_loss:  31.667
epoch:  49 loss:  22.848 test_loss:  20.964

2.4 保持模型&加载模型&预测

# 模型参数保存
torch.save(model.state_dict(), 'model_param.pt')
# 模型参数加载
model = Net(...)
model.load_state_dict(torch.load('model_param.pt'))
data_test = data[-24*6:]
data_test = (data_test - mean)/std
data_test = data_test.to_numpy()
data_test = np.expand_dims(data_test,0)
pm = model(torch.from_numpy(data_test).float().cuda())

在这里插入图片描述
在这里插入图片描述

ref: https://www.aqistudy.cn/historydata/daydata.php?city=%E5%8C%97%E4%BA%AC&month=2015-01

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/169784.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

复杂数据统计与R语言程序设计实验一

1.下载并安装R语言软件&#xff0c;熟悉基本操作的命令及操作界面&#xff0c;掌握软件的使用方法&#xff08;提供学号加姓名的截图&#xff09;。 2.下载并安装Rstudio&#xff0c; &#xff08;提供运行代码及运行结果的截图&#xff09;。 3.下载并安装R包DT&#xff0c;…

Nginx - 本机读取服务器图像、视频

目录 一.引言 二.安装 Nginx 1.安装 By apt 2.安装 By 官网 三.配置 Nginx 1.Linux 机器配置 2.重启 Nginx 服务 3.本机查看机器文件 四.总结 一.引言 前面介绍了 GFP-GAN、PNG2GIF、GIF2PNG 等操作&#xff0c;我们生成的 video、gif、png 等形式的文件都存储在 lin…

软件测试/测试开发/人工智能丨基于Spark的分布式造数工具:加速大规模测试数据构建

随着软件开发规模的扩大&#xff0c;测试数据的构建变得越来越复杂&#xff0c;传统的造数方法难以应对大规模数据需求。本文将介绍如何使用Apache Spark构建分布式造数工具&#xff0c;以提升测试数据构建的效率和规模。 为什么选择Spark&#xff1f; 分布式计算&#xff1a;…

时间序列与 Statsmodels:预测所需的基本概念(1)

后文&#xff1a;时间序列与 statsmodels&#xff1a;预测所需的基本概念&#xff08;2&#xff09;-CSDN博客 一、说明 本博客解释了理解时间序列的基本概念&#xff1a;趋势、季节性、白噪声、平稳性&#xff0c;并使用自回归、差分和移动平均参数进行预测示例。这是理解任何…

Python将原始数据集和标注文件进行数据增强(随机仿射变换),并生成随机仿射变换的数据集和标注文件

Python将原始数据集和标注文件进行数据增强&#xff08;随机仿射变换&#xff09;&#xff0c;并生成随机仿射变换的数据集和标注文件 前言前提条件相关介绍实验环境生成随机仿射变换的数据集和标注文件代码实现输出结果 前言 由于本人水平有限&#xff0c;难免出现错漏&#x…

buildadmin+tp8表格操作(5)自定义组装搜索的查询

有时候我们会自定义组装一些数据&#xff0c;发送给后端&#xff0c;让后端来进行筛选&#xff0c;这里有一个示例 const onComSearchIdEq () > {// 展开公共搜索baTable.table.showComSearch true/*** 公共搜索表单赋值* 范围搜索有两个输入框&#xff0c;输入框绑定变量…

PLC梯形图实操——风扇正反转

文章目录 1.项目内创建函数块&#xff08;FB&#xff09;2.项目内创建数据块&#xff08;DB&#xff09;2.1去除优化块访问2.2去除优化块的访问后对数据块进行编译 3.在函数块&#xff08;FB&#xff09;内实现正转反转的自锁与互锁3.1在函数块内实现电机正反转的梯形图 4.主函…

【机器学习】037_暂退法

一、实现原理 具有输入噪音的训练&#xff0c;等价于Tikhonov正则化 核心方法&#xff1a;在前向传播的过程中&#xff0c;计算每一内部层的同时注入噪声 从作用上来看&#xff0c;表面上来说是在训练过程中丢弃一些神经元 假设x是某一层神经网络层的输出&#xff0c;是下一…

Linux进程通信——IPC、管道、FIFO的引入

进程间的通信——IPC 进程间通信 (IPC&#xff0c;InterProcess Communication) 是指在不同进程之间传播或交换信息。 IPC的方式通常有管道 (包括无名管道和命名管道) 、消息队列、信号量、共享存储、Socket、Streams等。其中 Socket和Streams支持不同主机上的两个进程IPC。 …

1230天,百度再见!!!

从2020年7月8日至2023年11月20日&#xff0c;在百度的工作到达了终点&#xff0c;完成了从学生向职场人的蜕变&#xff0c;是时候说再见了&#xff01; 一、成长收获 在这1230天里收获颇丰&#xff0c;下面与各位分享一下。 从技术至上到业务赋能的思想转变 相信很多人都存在“…

初始环境配置

目录 一、JDK1、简介2、配置步骤 二、Redis1、简介2、配置步骤 三、MySQL1、简介2、配置步骤 四、Git1、简介2、配置步骤 五、NodeJS1、简介2、配置步骤 六、Maven1、简介2、配置步骤 七、Tomcat1、简介2、配置步骤 一、JDK 1、简介 JDK 是 Oracle 提供的 Java 开发工具包&…

发币成功,记录一下~

N年前就听说了这样一种说法——“一个熟练的区块链工程师&#xff0c;10分钟就可以发出一个新的币” 以前仅仅是有这么一个认识&#xff0c;但当时并不特别关注这个领域。 最近系统性学习中&#xff0c;今天尝试发币成功啦&#xff0c;记录一下&#xff5e; 发在 Sepolia Tes…

EI论文程序:Adaboost-BP神经网络的回归预测算法,可作为深度学习对比预测模型,丰富实验内容,自带数据集,直接运行!

适用平台&#xff1a;Matlab 2021及以上 本程序参考中文EI期刊《基于Adaboost的BP神经网络改进算法在短期风速预测中的应用》&#xff0c;程序注释清晰&#xff0c;干货满满&#xff0c;下面对文章和程序做简要介绍。 为了提高短期风速预测的准确性&#xff0c;论文提出了使用…

【前端学java】java 中的数组(9)

往期回顾&#xff1a; 【前端学java】JAVA开发的依赖安装与环境配置 &#xff08;0&#xff09;【前端学 java】java的基础语法&#xff08;1&#xff09;【前端学java】JAVA中的packge与import&#xff08;2&#xff09;【前端学java】面向对象编程基础-类的使用 &#xff08…

猫12分类:使用多线程爬取图片的Python程序

本文目标 对于猫12目标检测部分的数据集&#xff0c;采用网络爬虫来制作数据集。 在网络爬虫中&#xff0c;经常需要下载大量的图片。为了提高下载效率&#xff0c;可以使用多线程来并发地下载图片。本文将介绍如何使用Python编写一个多线程爬虫程序&#xff0c;用于爬取图片…

代码随想录 Day50 单调栈 LeetCodeT503 下一个最大元素II T42接雨水

前言 前面我们说到了单调栈的第一题,下一个最大元素I,其实今天的两道题都是对他的变种,知道第一个单调栈的思想能够想清楚,其实这道题是很简单的 考虑好三个状态,大于等于小于,其实对于前面这些题目只要细心的小伙伴就会发现其实小于和等于的处理是一样的都是直接入栈,只有大于…

记录一次较为完整的Jenkins发布流程

文章目录 1. Jenkins安装1.1 Jenkins Docker安装1.2 Jenkins apt-get install安装 2. 关联github/gitee服务与webhook2.1 配置ssh2.2 Jenkins关联2.3 WebHook 3. 前后端关联发布 1. Jenkins安装 1.1 Jenkins Docker安装 Docker很好&#xff0c;但是我没有玩明白如何使用Docke…

【并发编程】Synchronized原理详解

&#x1f4eb;作者简介&#xff1a;小明java问道之路&#xff0c;2022年度博客之星全国TOP3&#xff0c;专注于后端、中间件、计算机底层、架构设计演进与稳定性建设优化&#xff0c;文章内容兼具广度、深度、大厂技术方案&#xff0c;对待技术喜欢推理加验证&#xff0c;就职于…

广州华锐互动VRAR | VR课件内容编辑器解决院校实践教学难题

VR课件内容编辑器由VR制作公司广州华锐互动开发&#xff0c;是一款专为虚拟现实教育领域设计的应用&#xff0c;它能够将传统的教学内容转化为沉浸式的三维体验。通过这款软件&#xff0c;教师可以轻松创建和编辑各种虚拟场景、模型和动画&#xff0c;以更生动、直观的方式展示…

.NET6使用MiniExcel根据数据源横向导出头部标题及数据

.NET6MiniExcel根据数据源横向导出头部标题 MiniExcel简单、高效避免OOM的.NET处理Excel查、写、填充数据工具。 特点: 低内存耗用&#xff0c;避免OOM、频繁 Full GC 情况 支持即时操作每行数据 兼具搭配 LINQ 延迟查询特性&#xff0c;能办到低消耗、快速分页等复杂查询 轻量…