基于水基湍流算法优化概率神经网络PNN的分类预测 - 附代码

基于水基湍流算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于水基湍流算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于水基湍流优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用水基湍流算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于水基湍流优化的PNN网络

水基湍流算法原理请参考:https://blog.csdn.net/u011835903/article/details/121785889

利用水基湍流算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

水基湍流参数设置如下:

%% 水基湍流参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述

从结果来看,水基湍流-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/169017.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

游戏报错d3dcompiler_47.dll缺失怎么修复,总结多种修复方法

在使用这些软件和游戏的过程中,我们常常会遇到一些问题,其中之一就是d3dcompiler_47.dll丢失的问题。这个问题可能会导致软件或游戏无法正常运行,给用户带来困扰。本文将详细介绍解决软件游戏d3dcompiler_47.dll丢失的方法,帮助您…

读懂:“消费报销”模式新零售打法,适用连锁门店加盟的营销方案

读懂:“消费报销”模式新零售打法,适用连锁门店加盟的营销方案 引言:2023年的双十一已经落下帷幕,作为每年的经典电商促销节,今年已是第15个年头,但是今年各大电商平台却都是非常默契的,没有公布…

《数据:挖掘价值,洞察未来

大数据:挖掘价值,洞察未来 我们正身处一个数据驱动的时代,大数据已经成为企业和个人决策的重要依据。本文将深入探讨大数据的魅力,挖掘其价值,并洞察未来发展趋势,让我们一起领略大数据的无穷奥秘。 一、大…

《云计算:云端协同,智慧互联》

《云计算:云端协同,智慧互联》 云计算,这个科技领域中的热门词汇,正在逐渐改变我们的生活方式。它像一座座无形的桥梁,将世界各地的设备、数据、应用紧密连接在一起,实现了云端协同,智慧互联的愿…

比科奇推出5G小基站开放式RAN射频单元的高性能低功耗SoC

全新的PC805作为业界首款支持25Gbps速率eCPRI和CPRI前传接口的系统级芯片(SoC),消除了实现低成本开放式射频单元的障碍 中国北京,2023年11月 - 5G开放式RAN基带芯片和电信级软件提供商比科奇(Picocom)今日…

pip list 和 conda list的区别

PS : 网上说conda activate了之后就可以随意pip了 可以conda和pip混用 但是安全起见还是尽量用pip 这样就算activate了,进入base虚拟环境了 conda与pip的区别 来源 Conda和pip通常被认为几乎完全相同。虽然这两个工具的某些功能重叠,但它们设计用于不…

Linux文件目录以及文件类型

文章目录 Home根目录 //bin/sbin/etc/root/lib/dev/proc/sys/tmp/boot/mnt/media/usr 文件类型 Home 当尝试使用gedit等编辑器保存文件时,系统默认通常会先打开个人用户的“家”(home)目录, 建议在通常情况下个人相关的内容也是保…

在windows Server安装Let‘s Encrypt的SSL证书

1、到官网(https://certbot.eff.org/instructions?wswebproduct&oswindows)下载 certbot客户端。 2、安装客户端(全部默认安装即可) 3、暂停IIS中的网站 开始菜单中找到并运行“Certbot”,输入指令: …

【Web】Ctfshow Nodejs刷题记录

目录 ①web334 ②web335 ③web336 ④web337 ⑤web338 ⑥web339 ⑦web340 ⑧web341 ⑨web342-343 ⑩web344 ①web334 进来是一个登录界面 下载附件,简单代码审计 表单传ctfshow 123456即可 ②web335 进来提示 get上传eval参数执行nodejs代码 payload: …

Java贪吃蛇小游戏

Java贪吃蛇小游戏 import javax.swing.*; import java.awt.*; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.event.KeyEvent; import java.awt.event.KeyListener; import java.util.LinkedList; import java.util.Random;publi…

【开源】基于Vue.js的计算机机房作业管理系统的设计和实现

项目编号: S 017 ,文末获取源码。 \color{red}{项目编号:S017,文末获取源码。} 项目编号:S017,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 登录注册模块2.2 课程管理模块2.3 课…

前端本地存储数据库IndexedDB

前端本地存储数据库IndexedDB 1、前言2、什么是 indexedDB?3、什么是 localForage?4、localForage 的使用5、VUE 推荐使用 Pinia 管理 localForage 1、前言 前端本地化存储算是一个老生常谈的话题了,我们对于 cookies、Web Storage&#xff…

【C++ STL】string类-----迭代器(什么是迭代器?迭代器分哪几类?迭代器的接口如何使用?)

目录 一、前言 二、什么是迭代器 三、迭代器的分类与接口 💦迭代器的分类 💦迭代器的接口 💦迭代器与接口之间的关联 四、string类中迭代器的应用 💦 定义string类----迭代器 💦string类中迭代器进行遍历 ✨be…

庖丁解牛:NIO核心概念与机制详解 06 _ 连网和异步 I/O

文章目录 Pre概述异步 I/OSelectors打开一个 ServerSocketChannel选择键内部循环监听新连接接受新的连接删除处理过的 SelectionKey传入的 I/O回到主循环 Pre 庖丁解牛:NIO核心概念与机制详解 01 庖丁解牛:NIO核心概念与机制详解 02 _ 缓冲区的细节实现…

C# 监测 Windows 设备变动事件

本程序通过WPF窗口的 WindowProc 函数处理Windows的硬件或配置改变的事件。开发环境为VS 2022。 基础信息 硬件或配置改变的基础有以下内容: 消息: WM_DEVICECHANGE 要实现的WindowProc 函数参数: protected IntPtr WndProc(IntPtr hwnd, int msg, In…

React 中 react-i18next 切换语言( 项目国际化 )

背景 平时中会遇到需求,就是切换语言,语种等。其实总的来说都是用i18n来实现的 思路 首先在项目中安装i18n插件,然后将插件引入到项目,然后配置语言包(语言包需要你自己来进行配置,自己编写语言包&#xff…

C++初阶 | [四] 类和对象(下)

摘要:初始化列表,explicit关键字,匿名对象,static成员,友元,内部类,编译器优化 类是对某一类实体(对象)来进行描述的,描述该对象具有哪些属性、哪些方法,描述完成后就形成…

【zabbix监控三】zabbix之部署代理服务器

一、部署代理服务器 分布式监控的作用: 分担server的几种压力解决多机房之间的网络延时问题 1、搭建proxy主机 1.1 关闭防火墙,修改主机名 systemctl disbale --now firewalld setenforce 0 hostnamectl set-hostname zbx-proxy su1.2 设置zabbix下…

【C++ Primer Plus学习记录】for循环

很多情况下都需要程序执行重复的任务&#xff0c;C中的for循环可以轻松地完成这种任务。 我们来从程序清单5.1了解for循环所做的工作&#xff0c;然后讨论它是如何工作的。 //forloop.cpp #if 1 #include<iostream> using namespace std;int main() {int i;for (i 0; …

百云齐鲁 | 云轴科技ZStack成功实践精选(山东)

山东省作为我国重要的工业基地和北方地区经济发展的战略支点&#xff0c;在“十四五”规划中将数字强省建设分为数字基础设施、数字科技、数字经济、数字政府、数字社会、数字生态六大部分&#xff0c;涵盖政治、经济、民生等多个方面&#xff0c;并将大数据、云计算、人工智能…