java数据结构之HashMap

目录

前言

1、初始化

        1.1、初始化

        1.2、插入第一条数据

2、数组 + 链表

        2.1、插入数据:没有hash冲突

        2.2、插入数据:Key不同,但产生hash冲突

        2.3、插入数据:Key相同

3、数组 + 红黑树

        3.1、链表如何转化为红黑树?

        3.2、为什么要转化为红黑树?

4、数组resize

5、后记


前言

做过java开发的同学应该都知道HashMap是使用数组+链表的数据结构进行数据的存储,后来演变到jdk8之后,为了提高插入和查询效率,在插入的数据超过某个阈值之后,会将数组+链表的结构转化成数组+红黑树的数据结构,也即如下图:

HashMap 数据结构示意图

最近闲来无事,准备将HashMap插入数据的过程,以及其数据结构的转化过程,再回顾一下,故写此篇文章,以是记录。

1、初始化

        对于HashMap,在我们初始化以及插入第一条数据的时候,内部发生了什么事情呢?

        1.1、初始化

                当我们执行了如下一个初始化操作:

HashMap<String,String> map = new HashMap<String,String>();

                从源代码层面看,只是对内部一个叫做loadFactor的属性进行了初始化0.75,那么这个loadFactor参数是做什么用的呢?

                我们前言中说过,HashMap是用的一个数组+链表的形式进行数据的存储,那么这个数组的长度是如何决定的呢?什么时候要对数组进行扩充,什么时候又要对数组进行缩减呢?那么这个判断依据就是根据loadFactor来决定的。具体来说就是:当插入数据的个数 / 数组的长度 >= loadFactor时,我们就要对数组的长度进行扩展啦。因为当插入的数据越来越大的时候,在数组长度不变的情况下,hash冲突会越来越严重,数组节点下的数据就会越来越多,进而导致查询效率越来越差。

        另外需要说明的是:在扩展数组的时候,数组的长度都是2^n个,在初始化的时候,数组长度是2^4 = 16,每一次扩展,都增加一倍。

        1.2、插入第一条数据

                当我们执行如下操作,插入第一条数据的时候,hashmap的内部又发生什么事情了呢?

                map.put("chenza","30")

                第一步:先计算字符串"chenza"的hash值,作为判断插入数据哪个节点的依据。

                第二步:  初始化数组表table,如上所述,第一次初始化的时候,数组表table的长度是2^4 = 16

                第三步:用"chenza"的hash值 和 数组表table的长度(n - 1) 做"且"运算,判断当前数据应该插入到数组的哪个位置。(注:做且运算的原因保证插入的位置是[0,n-1]之间,不会数组越界)

                第四步:size字段+1,并判断是否超阈值threshold,如果超过阈值threshold,则进行数组table的扩展,且以后每插入一条数据,都会进行阈值判断。(注:这里的threshold = 当前的数组table长度 * loadFactor,与上节描述一致)

代码执行逻辑如下:

public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true); //计算key的hash值
    }

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length; //初始化数组table,长度16
        if ((p = tab[i = (n - 1) & hash]) == null)  //计算数据应该插入的位置
            tab[i] = newNode(hash, key, value, null);  //在数组第i个位置插入数据
        else {
            ....... //暂时省略
        }

        ++modCount;
        if (++size > threshold)  //size记录插入的数据的个数,并判断是否超阈值。
            resize();
        ......

至此,我们的初始化及第一条数据插入已经完成。从上所述,我们得知,我们一共做了三方面的工作:

(1)、初始化参数loadFactor

(2)、完成数组table的初始化,将其长度置为2^4 = 16

(3)、将数据插入到数组table对应的节点上。

到目前位置,我们的HashMap的结构如下:

map.put("chenza","30")

 

2、数组 + 链表

        现在,在我们的HashMap中,已经有了一条数据,那么我们接下来插入第二条、第三条...第n条数据,看看HashMap中到底经历了怎样的过程。

        2.1、插入数据:没有hash冲突

                何为hash冲突,在HashMap中所说的hash冲突,指的是:i = hash(key) & (n - 1)之后,数组table在i处已经有数据,代表两个不同的key需要放到数组的同一个节点下。

                当没有hash冲突时,和插入第一条数据一样,直接将数据插入到数组对应的节点即可。

                无hash冲突时的代码执行逻辑:

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);  //无hash冲突,直接将数据插入到数组中
        else {
            ......
        }

此时的数据结构如下:

        

        2.2、插入数据:Key不同,但产生hash冲突

               当Key不同,但是产生hash冲突的情况下,就会产生链表操作了。此时会顺着冲突处的数组节点的链表一个一个的去找,直到找到叶子节点位置,将新数据作为新的叶子节点挂在链表下面,如下图所示:

         

        当然在寻找叶子节点的过程中,如果发现当前数组节点下的链表长度超过一定的阈值时,就会自动将链表转化为红黑树进行存储(转化为红黑树的操作,参见第三节数组+红黑树 )。HashMap默认的链表长度不能超TREEIFY_THRESHOLD = 8.代码逻辑如下:

if ((p = tab[i = (n - 1) & hash]) == null)
	tab[i] = newNode(hash, key, value, null);
else {
	Node<K,V> e; K k;
	if (p.hash == hash &&
		((k = p.key) == key || (key != null && key.equals(k))))
		e = p;
	else if (p instanceof TreeNode)
		e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
	else {
		for (int binCount = 0; ; ++binCount) {
			if ((e = p.next) == null) { //循环找到链表的最下端,将新的数据添加到链表的最下端
				p.next = newNode(hash, key, value, null);
				if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
					treeifyBin(tab, hash); //如果链表长度超过8,则将链表转化为红黑树
				break;
			}
			if (e.hash == hash &&
				((k = e.key) == key || (key != null && key.equals(k))))
				break;
			p = e;
		}
	}

        2.3、插入数据:Key相同

                key相同,hash(Key)自然相同,自然也会有hash冲突。所以key相同是hash冲突的一种特殊情况。

                第一种情况:新数据的key和数组table的节点key相同,则直接替换数组table节点的value值即可。

                

                第一种情况:新数据的key和链表下某个节点的key相同,遍历链表,替换key相同处的value值即可。 

                

   代码执行逻辑:

if ((p = tab[i = (n - 1) & hash]) == null)
	tab[i] = newNode(hash, key, value, null);
else {
	Node<K,V> e; K k;
	if (p.hash == hash &&
		((k = p.key) == key || (key != null && key.equals(k))))
		e = p;  // 和数组table节点的值相同,直接替换value即可,value的替换见最下面的代码e.value = value
	else if (p instanceof TreeNode)
		e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
	else {
		for (int binCount = 0; ; ++binCount) {
			if ((e = p.next) == null) { //在这里进行了e的赋值,value的替换见最下面的代码e.value = value
				p.next = newNode(hash, key, value, null);
				if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
					treeifyBin(tab, hash); 
				break;
			}
			if (e.hash == hash &&
				((k = e.key) == key || (key != null && key.equals(k))))
				break;  // 循环遍历链表,寻找key值相同的链表节点,找到直接挑出循环。
			p = e;
		}
	}


    if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;  //替换key相同的value
                afterNodeAccess(e);
                return oldValue;
            }

3、数组 + 红黑树

        至此,我们在每个数组节点下插入的数据都不超过8个,所以一直是链表的形式进行数据的存储。

        在第二节中,我们也预埋了伏笔,当数组table某个节点下的链表超过8个以后,HashMap就会调用treeifyBin函数,将链表转化成红黑树的结构,本节,我们就来看看他是如何转化为红黑树的,以及为什么要转化为红黑树?

        3.1、链表如何转化为红黑树?

         链表转化为红黑树的过程,就写在treeifyBin函数中,我们先看一下这块儿代码,然后再逐个分析。

//链表转化为红黑树的过程代码
final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
            do {
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }

         第一步:转化成红黑树的条件: n = (tab.length) < MIN_TREEIFY_CAPACITY(64),也就是说当数组table的长度小于64时,不会使用红黑树,只会对数组table进行扩展,重新分配数据的存放位置。

         第二步:当数组table长度大于64时,才开启转化红黑树的执行逻辑。代码中有一个while循环,注意这个while循环只是把链表节点Node转化为红黑树的节点TreeNode,这个循环中并不进行生成红黑树。这就引入一个问题,他是如何把Node转化为TreeNode的呢?其实从继承关系中可以看到TreeNode是继承自Node,TreeNode和Node的结构如下,从图上看,TreeNode比Node多了几个属性:parent,left,right,prev,red    

      

         第三步:当把所有的Node节点转化为TreeNode节点之后,继续调用hd.treeify(tab),这个才是真正的把链表转化为红黑树。

         

        3.2、为什么要转化为红黑树?

         (1)、从链表和红黑树的结构就可以看到,红黑树的层级更低,在进行查询时,链表的查询时间复杂度是O(n),红黑树的查询时间复杂度是O(log(n)),在数据量很大的情况下,显然红黑树的查询效率比链表要好的多。

         (2)、我们知道,平衡二叉树的结构更加平衡,左右子树的高度差不会超过1,为什么不使用平衡二叉树呢? 原因是我们还要考虑插入数据的性能,平衡二叉树的结构的确更加均衡,但是为了维持这种均衡,在插入数据时,需要不断的进行平衡二叉树的旋转调整,插入效率相比红黑树来说,差的多。根据权威资料显示:插入操作是红黑树的优势之一,红黑树的插入操作可以在 O(log(n)) 的时间内完成,而平衡二叉树的插入操作在最坏情况下需要 O(n)的时间。

4、数组resize

        最后,我想给大家重放一下数组resize的过程,为什么呢?在我们实际使用HashMap的过程中,如果数据量很大,免不了要进行数组的resize。resize不仅仅要对数组table进行扩展,还要对数组table节点上下挂的数据进行重新分配,所以是一个非常消耗性能的过程。

        有同学可能要问了,为什么要对数组table节点上下挂的数据进行重新分配,让他们安静的待在原来的节点下不是挺好的吗?为什么要翻来覆去的去折腾?对于这样的同学,送给你三个字:"要多想"

        原因很简单,数组table进行了扩展,那么数组的长度n也发生了变化,我们判断数据放在数组哪个节点之下用的是 hash(key) & (n - 1),现在数组table长度n变了,数据存放的位置自然也要发生变化,不然查询key时定位的数组节点位置不一样,无法从HashMap中查出key对应的数据。

        另外在走读源码的过程中,发现一个很有意思的设计:那就是原来一个数组节点下的链表(红黑树)数据,在进行resize之后,数据会被重新分配到几个新的节点上呢?答案是两个。这个点在没看源代码之前是没有想到的,看了源代码之后,感觉这个点设计的太精妙了。原因是什么呢?待我慢慢道来。

        我们知道,数组table的长度每次resize都是扩展一倍,且长度还都是2^n,也就是说数组table的长度只会是16,32,64,128,256...;而数据存放到数组哪个节点是有由hash(key) & (length - 1) 来决定的。在这两个条件下,就会发生上述一个节点数据分裂成两个节点数据的情况。我们以扩展前数组table长度是16和扩展后数组table长度是32为例,来说明具体原因。

        hash(key) 是不会变的,变的只有length - 1;

        当length = 16时,length - 1就是15,15的二进制是00001111,

        当length = 32时,length - 1就是31,31的二进制是00011111,

        看出来什么特殊之处了吗?对,就是31的二进制比15的二进制的上一位多了一个1,这就导致(hash(key) & 31) (hash(key) & 15) ,要么相等(数据保留在数组原位置),要么最高位多一个1(也就是数组位置+16);

        32扩展到64; 64扩展到128... 原理类似。

        看到这里,真是不得不感叹二进制世界的奇妙和jdk编程人员对二进制的运用达到了炉火纯青的地步。

        所以在扩展前后一个数组节点下的数据的分裂过程如下:       

        下面是代码层面链表一分二的过程(代码里有作者注释)(另:红黑树的分裂过程类似,也是将一个红黑树分裂成两个红黑树,在这里就不赘述了,大家可以看((TreeNode<K,V>)e).split(this, newTab, j, oldCap)中的split函数,里面也是两个变量loHead 和 hiHead分别存放分裂后的两个红黑树)

final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        //扩展前的数组长度
        int oldCap = (oldTab == null) ? 0 : oldTab.length; 
        //扩展前的插入数据的阈值(数组长度 * 0.75)
        int oldThr = threshold; 						   
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) { //如果数组长度已经大于1 << 32,不再进行扩展,直接返回。
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            // newCap = oldCap << 1,左移一位,相当于扩展一倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&  
                    oldCap >= DEFAULT_INITIAL_CAPACITY)
                //插入数据的阈值也扩展一倍。
                newThr = oldThr << 1; 
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                    (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
		// -----上面的代码主要是对新数组的长度和数据个数的阈值进行重新计算
		// -----下面的代码主要是对数据重新分配
        @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        //如果是红黑树,则进行红黑树的分裂
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); 
                    else {//如果是链表,则进行链表的分裂
						/**
						 *由分析知,一个链表只可能分裂成两个链表。
						 *loHead:存放的是位置不动的数据
						 *hiHead:存放的是位置+16(以分析为例)的数据
						*/
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
							//j不动,loHead还存放在原来的数组位置
                            newTab[j] = loHead; 
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
							//j + 16(以分析为例),hiHead存放在j + 16位置
                            newTab[j + oldCap] = hiHead; 
                        }
                    }
                }
            }
        }
        return newTab;
    }

5、后记

        断断续续写了好久,一边走读源码,一边画图,一边写文章,终于把HashMap的内部结构分析完了。相对其他java数据结构来说,HashMap结构算是稍微比较复杂的,但是HashMap并不是多线程安全的,在多线程使用的情况下,要注意线程安全问题。

        了解了HashMap之后,其实也就了解了HashSet,因为HashSet就是内部构建了一个HashMap对象,使用了HashMap的key不会重复的特性来进行数据的去重。

        另外本篇文章旨在探究HashMap的结构,对其中的红黑树并没有过多着墨进行进一步深究,因为红黑树的生成条件、插入数据时节点的旋转、红黑节点的变化等等,还是比较复杂的,如果写在这篇文章中,有点鸠占鹊巢的意思。所以,红黑树的内容完全可以单独抽离一篇文章进行探究,就不在HashMap文章中进行赘述了,后面有时间,我会再学习一下红黑树,再来跟大家唠叨唠叨。

        

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/16715.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

golang - switch

switch 的使用 switch 语句用于基于不同条件执行不同操作&#xff0c;&#xff0c;直每一个 case 分支都是唯一的&#xff0c;从上到下逐一测试到匹配为止匹配项后面也不需要再加 break switch 表达式 {case 表达式1, 表达式2, ... :语句块1case 表达式2, 表达式3, ... :语句块…

GPT:你知道这五年我怎么过的么?

时间轴 GPT 首先最初版的GPT&#xff0c;来源于论文Improving Language Understanding by Generative Pre-Training&#xff08;翻译过来就是&#xff1a;使用通用的预训练来提升语言的理解能力&#xff09;。GPT这个名字其实并没有在论文中提到过&#xff0c;后人将论文名最后…

【Unity3D小功能】Unity3D中实现轮船在水面上移动效果

推荐阅读 CSDN主页GitHub开源地址Unity3D插件分享简书地址我的个人博客 大家好&#xff0c;我是佛系工程师☆恬静的小魔龙☆&#xff0c;不定时更新Unity开发技巧&#xff0c;觉得有用记得一键三连哦。 一、前言 标题是啥我写啥&#xff0c;大家好&#xff0c;今天给大家带来…

你的 Kubernetes 安全吗?最新benchmark的重要趋势解读

导语 疫情过后经济处在缓慢复苏的阶段&#xff0c;对于企业应该优先考虑数字化转型&#xff0c;因为它可以促进增长和创新。 不可避免地&#xff0c;当今的数字化转型计划依赖于云的可扩展性和灵活性。 虽然在云中启动应用程序和服务带来了许多机遇&#xff0c;但也带来了新的…

云原生Istio架构和组件介绍

目录 1 Istio 架构2 Istio组件介绍2.1 Pilot2.2 Mixer2.3 Citadel2.4 Galley2.5 Sidecar-injector2.6 Proxy(Envoy)2.7 Ingressgateway2.8 其他组件 1 Istio 架构 Istio的架构&#xff0c;分为控制平面和数据面平两部分。 - 数据平面&#xff1a;由一组智能代理&#xff08;[En…

HCIA-RS实验-路由配置-静态路由缺省路由(2)

接上文HCIA-RS实验-路由配置-静态路由&缺省路由 继续完成缺省路由&#xff1b;其他原截图就不再一一截图&#xff0c;有需要往回看一篇。 关闭上一篇的接口shutdown&#xff08;重新启动&#xff09; 上一篇在R2关闭的接口2 需要重新启动&#xff0c;输入 undo shutdown…

4月VR大数据:PICO平台应用近400款,领跑国内VR生态

Hello大家好&#xff0c;每月一期的VR内容/硬件大数据统计又和大家见面了。 想了解VR软硬件行情么&#xff1f;关注这里就对了。我们会统计Steam平台的用户及内容等数据&#xff0c;每月初准时为你推送&#xff0c;不要错过喔&#xff01; 本数据报告包含&#xff1a;Steam VR硬…

我们公司的面试,有点不一样!

我们公司的面试&#xff0c;有点不一样&#xff01; 朋友们周末愉快&#xff0c;我是鱼皮。因为我很屑&#xff0c;所以大家也可以叫我屑老板。 自从我发了自己创业的文章和视频后&#xff0c;收到了很多小伙伴们的祝福&#xff0c;真心非常感谢&#xff01; 不得不说&#…

Elasticsearch:人类语言到 Elasticsearch 查询 DSL

Elasticsearch 为开发者提供了强大的搜索功能。Elasticsearch 使用 DSL 来进行查询。对于很多从关系数据库过来的人&#xff0c;这个很显然不很适应。虽然我们可以使用 SQL 来进行查询&#xff0c;但是我们必须通过一些命令来进行转换。我们可以通过阅读文章&#xff1a; Elast…

【Java面试八股文】数据库篇

导航&#xff1a; 【黑马Java笔记踩坑汇总】JavaSEJavaWebSSMSpringBoot瑞吉外卖SpringCloud黑马旅游谷粒商城学成在线MySQL高级篇设计模式牛客面试题 目录 请你说说MySQL索引,以及它们的好处和坏处 请你说说MySQL的索引是什么结构,为什么不用哈希表 请你说说数据库索引的底…

Segmentation of retinal vessels based on MRANet

随手把一篇论文的创新部分抽取出来 MLF 为了更好地聚合每一层的上采样特征信息和MSR块的信息&#xff0c;在解码路径中使用了MLF块&#xff0c;这允许最大限度地重用功能&#xff0c;从而减少细节的损失。MLF块的结构如图2所示。 如图2所示&#xff0c;有两种输入:input1和inp…

观察 | 卫浴产业数字化转型下的中国智造样本

文 | 智能相对论 作者 | 佘凯文 数字技术的发展已成为全球科技变革向高端技术不断升级的方向。 年初&#xff0c;中共中央、国务院印发《数字中国建设整体布局规划》&#xff0c;这是党的二十大后党中央在我国数字化发展领域作出的最全面擘画&#xff0c;从顶层设计的高度对…

ETL工具 - Kettle 介绍及基本使用

一、Kettle 介绍 在介绍 Kettle 前先了解下什么是 ETL&#xff0c;ETL是 Extract-Transform-Load 的缩写&#xff0c;即数据 抽取、转换、装载 的过程&#xff0c;对于企业或行业应用来说&#xff0c;经常会遇到各种异构数据的处理、转换、迁移等操作&#xff0c;这些操作有可…

华为网工实验(VRRP多网关负载分担,OSPF基础操作)

采用VRRP多网关负载分担实现流量的负载均衡 配置思路&#xff1a;首先配置各个接口ip,让设备间能够实现通信&#xff0c;采用OSPF协议实现通信&#xff0c;然后AR2 AR3创建两个备份组&#xff0c;主备不同的两个备份组 组网图 #先设备命名并配置IP&#xff0c;三台设备类似&a…

山东专升本计算机第九章-信息安全

信息安全 计算机病毒 考点 4病毒的定义与特点 定义 • 一组人为设计的程序满足一定条件即被激活 特点 • 可执行性 • 破坏性 • 占用系统资源 • 破坏或删除程序或数据文件 • 传染性 • 潜伏性 • 隐蔽性 • 针对性 • 宏病毒只感染docx • 衍生性 • 抗反病毒软…

【Java笔试强训 10】

&#x1f389;&#x1f389;&#x1f389;点进来你就是我的人了博主主页&#xff1a;&#x1f648;&#x1f648;&#x1f648;戳一戳,欢迎大佬指点! 欢迎志同道合的朋友一起加油喔&#x1f93a;&#x1f93a;&#x1f93a; 目录 一、选择题 二、编程题 &#x1f525;井字棋 …

Linux信号:SIGCHLD信号和僵尸进程

1. SIGCHLD信号产生条件&#xff1a; &#xff08;1&#xff09;子进程终止&#xff1b; &#xff08;2&#xff09;子进程收到SIGSTOP信号被暂停&#xff1b; &#xff08;3&#xff09;子进程处于暂停状态&#xff0c;收到SIGCONT信号被唤醒。 2. 捕捉SIGCHLD&#xff0c;避免…

网络计算模式复习(二)

网格 由于B/S架构管理软件只安装在服务器端上&#xff0c;网络管理人员只需要管理服务器就行了&#xff0c;用户界面主要事务逻辑在服务器端完全通过WWW浏览器实现&#xff0c;极少部分事务逻辑在前端&#xff08;Browser&#xff09;实现&#xff0c;所有的客户端只有浏览器&…

17自由度人形机器人实现行走功能

1. 功能说明 本文示例将实现R307样机17自由度人形机器人行走的功能。该项目利用探索者平台制作&#xff0c;其驱动系统采用伺服电机。 2. 仿人形机器人结构设计 人型机器人是一种旨在模仿人类外观和行为的机器人&#xff08;robot&#xff09;&#xff0c;尤其特指具有和人类相…

MySQL备份和恢复

文章目录 一、库的备份和恢复1.库的备份2.库的恢复 二、表的备份和恢复1.表的备份2.表的恢复 备份数据&#xff0c;其实就是生成一个 sql 文件&#xff0c;把创建数据库、创建表、插入数据等各种 SQL 语句都装载到这个文件中。恢复数据&#xff0c;其实就是按顺序执行 sql 文件…