SPASS-聚类和判别分析

聚类与判别分析概述

基本概念

聚类分析

        聚类分析的基本思想是找出一些能够度量样本或指标之间相似程度的统计量,以这些统计量为划分类型的依据,把一些相似程度较大的样本(或指标)聚合为一类,把另外一些彼此之间相似程度较大的样本又聚合为一类。根据分类对象的不同,聚类分析可分为对样本的聚类和对变量的聚类两种。

 判别分析 

        判别分析是判别样本所属类型的一种统计方法。

样本间亲疏关系的度量

连续变量的样本间距离常用度量

        主要方法有欧氏距离(Euclidean Distance)、欧氏平方距离(Squared Euclidean Distance)、切比雪夫距离(Chebychev Distance)、明可斯基距离(Minkowski Distance)、用户自定义距离(Customize Distance)、Pearson相关系数、夹角余弦(Cosine)等

顺序变量的样本间距离常用度量

        常用的有  统计量(Chi-square measure)和  统计量(Phi-square measure)。

二者区别

        不同之处在于,判别分析是在已知研究对象分为若干类型(或组别)并已取得各种类型的一批已知样本的观测量数据的基础上,根据某些准则建立判别式,然后对未知类型的样本进行差别分析。

说明

  • 聚类分析的目的是找到样本中数据的特点,因此应注意所选择的变量是否已经能够反应所要聚类样本的主要特点。
  • 聚类分析时应注意所选择的变量是否存在数量级上的差别。如果一个样本包含不同数量的变量,则应先对变量进行标准化处理,而后再进行聚类。
  • 变量间的关系度量模型与样本间相类似,只不过一个用矩阵的行进行计算,另一个用矩阵的列进行计算。

二阶聚类

基本概念

        二阶聚类(TwoStep Cluster)(也称为两步聚类)是一个探索性的分析工具,为揭示自然的分类或分组而设计,是数据集内部的而不是外观上的分类。它是一种新型的分层聚类算法(Hierarchical Algorithms),目前主要应用到数据挖掘(Data Mining)和多元数据统计的交叉领域——模式分类中。该过程主要有以下几个特点:

  • 分类变量和连续变量均可以参与二阶聚类分析;
  • 该过程可以自动确定分类数; 可以高效率地分析大数据集;
  • 用户可以自己定制用于运算的内存容量。

统计原理

        两步法的功能非常强大,而原理又较为复杂。他在聚类过程中除了使用传统的欧氏距离外,为了处理分类变量和连续变量,它用似然距离测度,它要求模型中的变量是独立的,分类变量是多项式分布,连续变量是正态分布的。分类变量和连续变量均可以参与两步聚类分析。

分析步骤

第1步 预聚类:对每个观测变量考察一遍,确定类中心。根据相近者为同一类的原则,计算距离并把与类中心距离最小的观测量分到相应的各类中去。这个过程称为构建一个分类的特征树(CF)。

第2步 正式聚类:使用凝聚算法对特征树的叶节点分组,凝聚算法可用来产生一个结果范围。

 

 

         从中可以看出,此算法采用的是两步(二阶)聚类,共输入3个变量,将所有个案聚成3类。聚类的平均轮廓值为0.6(其范围值为-1.0~1.0,值越大越好),说明聚类质量较好。      

        因此,数据类别打标  

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/165533.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

VMware——WindowServer2012R2安装jdk1.8及环境变量配置

一、安装 双击【jdk-8u161-windows-x64.exe】程序包,弹出窗口点击【下一步】,如下图: 指定安装目录为【Java\jdk1.8.0_161】,磁盘目录自定义,如下图: 点击【下一步】一直到有个【更改】按钮,可…

Network(五)数值介绍与子网划分

一 数值 1 数值介绍 (1)带宽 在一定时间内通过某一网络连接的信息量 基本单位:比特每秒 (bit/s) 在计算机软件方面用字节每秒为单位 (2)存储量 计算机存储量可以用位和字节计量 (3)常用…

C语言——2.安装并使用VS

文章目录 1.编译器是什么2.编译器的选择2.1.VS2019/2022 的初步了解2.2.为什么不选择其他编译器呢? 3.编译器的安装过程(保姆级别教学)3.1.检查电脑版本3.2.下载安装包3.3.选择安装选项3.4.重启电脑3.5.创建账户登录3.6.颜色配置3.7.VS&#…

【C语言.oj刷题】有序#整型矩阵元素查找##{思路+C源码}

目录 题目信息 题目分析: 法一: 遍历二维数组(低效) 思路 源码 局限性 法二: 对每一行二分查找(有所提效) 思路 源码 局限性 法三: 利用一切有利条件使用二分查找 思路 …

Linux系统之lsof命令的基本使用

Linux系统之lsof命令的基本使用 一、lsof命令的基本使用二、lsof命令的使用帮助2.1 lsof命令的help帮助信息2.2 lsof命令帮助解释 三、lsof的基本使用3.1 直接使用lsof命令3.2 查看某个进程打开的所有文件3.3 查看某个用户打开的所有文件3.4 查看某个文件被哪些进程打开3.5 查看…

卷积神经网络(CNN)天气识别

文章目录 前期工作1. 设置GPU(如果使用的是CPU可以忽略这步)我的环境: 2. 导入数据3. 查看数据 二、数据预处理1. 加载数据2. 可视化数据3. 再次检查数据4. 配置数据集 三、构建CNN网络四、编译五、训练模型六、模型评估 前期工作 1. 设置GP…

汽车虚拟仿真视频数据理解--CLIP模型原理

CLIP模型原理 CLIP的全称是Contrastive Language-Image Pre-Training,中文是对比语言-图像预训练,是一个预训练模型,简称为CLIP。该模型是 OpenAI 在 2021 年发布的,最初用于匹配图像和文本的预训练神经网络模型,这个任…

大数据安全 测试

测试1、用户 hive/1.common2.hadoop.fql.comLEXIN.COM 和 nn/1.common2.hadoop.fql.com 分别对 Hive 进行查询 &#xff08;1&#xff09;HDFS 配置 vim /usr/local/fqlhadoop/hadoop/conf/core-site.xml <property><name>hadoop.proxyuser.hive.hosts</name&g…

【机器学习13】生成对抗网络

1 GANs的基本思想和训练过程 生成器用于合成“假”样本&#xff0c; 判别器用于判断输入的样本是真实的还是合成的。 生成器从先验分布中采得随机信号&#xff0c;经过神经网络的变换&#xff0c; 得到模拟样本&#xff1b; 判别器既接收来自生成器的模拟样本&#xff0c; 也接…

算法之路(二)

&#x1f58a;作者 : D. Star. &#x1f4d8;专栏 : 算法小能手 &#x1f606;今日分享 : 你知道北极熊的皮肤是什么颜色的吗&#xff1f;&#xff08;文章结尾有答案哦&#xff01;&#xff09; 文章目录 力扣的209题✔解题思路✔代码:✔总结: 力扣的3题✔解题思路&#xff1a…

Linux线程编程

Linux线程编程初步 一些历史背景 Linux间接起源于Unix&#xff0c;而Linux诞生时并不存在 "线程"的概念。在20世纪90年代线程才流行起来&#xff0c;POSIX Thread标准于 1995年确立。Unix中引入 Thread 之后&#xff0c;大量函数被重写&#xff0c;信号机制也变得复…

AI实践与学习1_Milvus向量数据库实践与原理分析

前言 随着NLP预训练模型&#xff08;大模型&#xff09;以及多模态研究领域的发展&#xff0c;向量数据库被使用的越来越多。 在XOP亿级题库业务背景下&#xff0c;对于试题召回搜索单单靠着ES集群已经出现性能瓶颈&#xff0c;因此需要预研其他技术方案提高试题搜索召回率。…

AVL树和红黑树

AVL树和红黑树 一、AVL树1. 概念2. 原理AVL树节点的定义插入不违反AVL树性质违反AVL树性质左单旋右单旋左右双旋右左双旋总结 删除 3. 验证代码4. AVL树完整实现代码 二、红黑树1. 概念2. 性质3. 原理红黑树节点的定义默认约定插入情况一 &#xff08;u存在且为红&#xff09;情…

MySQL InnoDB 引擎底层解析(一)

6. InnoDB 引擎底层解析 MySQL 对于我们来说还是一个黑盒&#xff0c;我们只负责使用客户端发送请求并等待服务器返回结果&#xff0c;表中的数据到底存到了哪里&#xff1f;以什么格式存放的&#xff1f;MySQL 是以什么方式来访问的这些数据&#xff1f;这些问题我们统统不知…

创新案例|云服务平台HashiCorp是如何构建开源社区实现B2B增长飞轮

社区文化是HashiCorp企业文化的重要组成部分。虽然众多公司声称自己是社区驱动&#xff0c;但实际付诸行动的很少。与众不同的是&#xff0c;HashiCorp从一开始就将社区视为战略方针的核心&#xff0c;这也影响和塑造了公司今天的发展方向。社区不仅是执行策略之一&#xff0c;…

约数个数定理

首先在讲这个定理前&#xff0c;首先科普一下前置知识 约数&#xff1a; 何为约数&#xff0c;只要能整除n的整数就是n的约数&#xff0c;举个例子&#xff0c;3的约束是1和3因为1和3能整除3 质数&#xff1a; 除了这个数字本身和1以外没有其他因子的数字就叫质数&#xff…

pythorch的numel()函数计算模型大小与现存占用

本文解释简单给一个模型列子记录如何计算该模型参数量与模型显存占用情况&#xff0c;该文直接调用torchvision库的模型文件构建模型model&#xff0c;在使用parameters()函数遍历&#xff0c;并在遍历情况下使用numel()函数记录模型参数量与显存占用。 代码如下&#xff1a; …

日志维护库:loguru

在复杂的项目中&#xff0c;了解程序的运行状态变得至关重要。在这个过程中&#xff0c;日志记录&#xff08;logging&#xff09;成为我们追踪、调试和了解代码执行的不可或缺的工具。在python语言中常用logging日志库&#xff0c;但是logging日志库使用相对繁琐&#xff0c;在…

Linux远程工具专家推荐(二)

8. Apache Guacamole Apache Guacamole 是一款免费开源的无客户端远程桌面网关&#xff0c;支持 VNC、RDP 和 SSH 等标准协议。无需插件或客户端软件&#xff1b;只需使用 HTML5 Web 应用程序&#xff08;例如 Web 浏览器&#xff09;即可。 这意味着您的计算机的使用不受任何一…

ElasticSearch学习篇6_ES实践与Lucene对比及原理分析技术分享小记

前言 QBM、MFS的试题检索、试题查重、公式转换映射等业务场景以及XOP题库广泛使用搜索中间件&#xff0c;业务场景有着数据量大、对内容搜索性能要求高等特点&#xff0c;其中XOP题库数据量更是接近1亿&#xff0c;对检索性能以及召回率要求高。目前QBM、MFS使用的搜索中间件是…