卷积神经网络(CNN)天气识别

文章目录

  • 前期工作
    • 1. 设置GPU(如果使用的是CPU可以忽略这步)
      • 我的环境:
    • 2. 导入数据
    • 3. 查看数据
  • 二、数据预处理
    • 1. 加载数据
    • 2. 可视化数据
    • 3. 再次检查数据
    • 4. 配置数据集
  • 三、构建CNN网络
  • 四、编译
  • 五、训练模型
  • 六、模型评估

前期工作

1. 设置GPU(如果使用的是CPU可以忽略这步)

我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1
import tensorflow as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")

2. 导入数据

import matplotlib.pyplot as plt
import os,PIL

# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(1)

# 设置随机种子尽可能使结果可以重现
import tensorflow as tf
tf.random.set_seed(1)

from tensorflow import keras
from tensorflow.keras import layers,models

import pathlib
data_dir = "weather_photos/"
data_dir = pathlib.Path(data_dir)

3. 查看数据

数据集一共分为cloudyrainshinesunrise四类,分别存放于weather_photos文件夹中以各自名字命名的子文件夹中。

image_count = len(list(data_dir.glob('*/*.jpg')))

print("图片总数为:",image_count)
roses = list(data_dir.glob('sunrise/*.jpg'))
PIL.Image.open(str(roses[0]))

在这里插入图片描述

二、数据预处理

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

batch_size = 32
img_height = 180
img_width = 180
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 1125 files belonging to 4 classes.
Using 900 files for training.
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 1125 files belonging to 4 classes.
Using 225 files for validation.

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)
['cloudy', 'rain', 'shine', 'sunrise']

2. 可视化数据

plt.figure(figsize=(20, 10))

for images, labels in train_ds.take(1):
    for i in range(20):
        ax = plt.subplot(5, 10, i + 1)

        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

在这里插入图片描述

3. 再次检查数据

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break
(32, 180, 180, 3)
(32,)
  • Image_batch是形状的张量(32,180,180,3)。这是一批形状180x180x3的32张图片(最后一维指的是彩色通道RGB)。
  • Label_batch是形状(32,)的张量,这些标签对应32张图片

4. 配置数据集

AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

三、构建CNN网络

卷积神经网络(CNN)的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels),包含了图像高度、宽度及颜色信息。不需要输入batch size。color_channels 为 (R,G,B) 分别对应 RGB 的三个颜色通道(color channel)。在此示例中,我们的 CNN 输入,fashion_mnist 数据集中的图片,形状是 (28, 28, 1)即灰度图像。我们需要在声明第一层时将形状赋值给参数input_shape

num_classes = 4

model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
    
    layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3  
    layers.AveragePooling2D((2, 2)),               # 池化层1,2*2采样
    layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3
    layers.AveragePooling2D((2, 2)),               # 池化层2,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3
    layers.Dropout(0.3),  
    
    layers.Flatten(),                       # Flatten层,连接卷积层与全连接层
    layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取
    layers.Dense(num_classes)               # 输出层,输出预期结果
])

model.summary()  # 打印网络结构
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
rescaling (Rescaling)        (None, 180, 180, 3)       0         
_________________________________________________________________
conv2d (Conv2D)              (None, 178, 178, 16)      448       
_________________________________________________________________
average_pooling2d (AveragePo (None, 89, 89, 16)        0         
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 87, 87, 32)        4640      
_________________________________________________________________
average_pooling2d_1 (Average (None, 43, 43, 32)        0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 41, 41, 64)        18496     
_________________________________________________________________
dropout (Dropout)            (None, 41, 41, 64)        0         
_________________________________________________________________
flatten (Flatten)            (None, 107584)            0         
_________________________________________________________________
dense (Dense)                (None, 128)               13770880  
_________________________________________________________________
dense_1 (Dense)              (None, 5)                 645       
=================================================================
Total params: 13,795,109
Trainable params: 13,795,109
Non-trainable params: 0
_________________________________________________________________

四、编译

  • 在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:
    • 损失函数(loss):用于衡量模型在训练期间的准确率。
    • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
    • 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=0.001)
model.compile(optimizer=opt,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

五、训练模型

epochs = 10
history = model.fit(
  train_ds,
  validation_data=val_ds,
  epochs=epochs
)
Epoch 1/10
29/29 [==============================] - 6s 58ms/step - loss: 1.5865 - accuracy: 0.4463 - val_loss: 0.5837 - val_accuracy: 0.7689
Epoch 2/10
29/29 [==============================] - 0s 12ms/step - loss: 0.5289 - accuracy: 0.8295 - val_loss: 0.5405 - val_accuracy: 0.8133
Epoch 3/10
29/29 [==============================] - 0s 12ms/step - loss: 0.2930 - accuracy: 0.8967 - val_loss: 0.5364 - val_accuracy: 0.8000
Epoch 4/10
29/29 [==============================] - 0s 12ms/step - loss: 0.2742 - accuracy: 0.9074 - val_loss: 0.4034 - val_accuracy: 0.8267
Epoch 5/10
29/29 [==============================] - 0s 11ms/step - loss: 0.1952 - accuracy: 0.9383 - val_loss: 0.3874 - val_accuracy: 0.8844
Epoch 6/10
29/29 [==============================] - 0s 11ms/step - loss: 0.1592 - accuracy: 0.9468 - val_loss: 0.3680 - val_accuracy: 0.8756
Epoch 7/10
29/29 [==============================] - 0s 12ms/step - loss: 0.0836 - accuracy: 0.9755 - val_loss: 0.3429 - val_accuracy: 0.8756
Epoch 8/10
29/29 [==============================] - 0s 12ms/step - loss: 0.0943 - accuracy: 0.9692 - val_loss: 0.3836 - val_accuracy: 0.9067
Epoch 9/10
29/29 [==============================] - 0s 12ms/step - loss: 0.0344 - accuracy: 0.9909 - val_loss: 0.3578 - val_accuracy: 0.9067
Epoch 10/10
29/29 [==============================] - 0s 11ms/step - loss: 0.0950 - accuracy: 0.9708 - val_loss: 0.4710 - val_accuracy: 0.8356

六、模型评估

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/165521.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

汽车虚拟仿真视频数据理解--CLIP模型原理

CLIP模型原理 CLIP的全称是Contrastive Language-Image Pre-Training,中文是对比语言-图像预训练,是一个预训练模型,简称为CLIP。该模型是 OpenAI 在 2021 年发布的,最初用于匹配图像和文本的预训练神经网络模型,这个任…

大数据安全 测试

测试1、用户 hive/1.common2.hadoop.fql.comLEXIN.COM 和 nn/1.common2.hadoop.fql.com 分别对 Hive 进行查询 &#xff08;1&#xff09;HDFS 配置 vim /usr/local/fqlhadoop/hadoop/conf/core-site.xml <property><name>hadoop.proxyuser.hive.hosts</name&g…

【机器学习13】生成对抗网络

1 GANs的基本思想和训练过程 生成器用于合成“假”样本&#xff0c; 判别器用于判断输入的样本是真实的还是合成的。 生成器从先验分布中采得随机信号&#xff0c;经过神经网络的变换&#xff0c; 得到模拟样本&#xff1b; 判别器既接收来自生成器的模拟样本&#xff0c; 也接…

算法之路(二)

&#x1f58a;作者 : D. Star. &#x1f4d8;专栏 : 算法小能手 &#x1f606;今日分享 : 你知道北极熊的皮肤是什么颜色的吗&#xff1f;&#xff08;文章结尾有答案哦&#xff01;&#xff09; 文章目录 力扣的209题✔解题思路✔代码:✔总结: 力扣的3题✔解题思路&#xff1a…

Linux线程编程

Linux线程编程初步 一些历史背景 Linux间接起源于Unix&#xff0c;而Linux诞生时并不存在 "线程"的概念。在20世纪90年代线程才流行起来&#xff0c;POSIX Thread标准于 1995年确立。Unix中引入 Thread 之后&#xff0c;大量函数被重写&#xff0c;信号机制也变得复…

AI实践与学习1_Milvus向量数据库实践与原理分析

前言 随着NLP预训练模型&#xff08;大模型&#xff09;以及多模态研究领域的发展&#xff0c;向量数据库被使用的越来越多。 在XOP亿级题库业务背景下&#xff0c;对于试题召回搜索单单靠着ES集群已经出现性能瓶颈&#xff0c;因此需要预研其他技术方案提高试题搜索召回率。…

AVL树和红黑树

AVL树和红黑树 一、AVL树1. 概念2. 原理AVL树节点的定义插入不违反AVL树性质违反AVL树性质左单旋右单旋左右双旋右左双旋总结 删除 3. 验证代码4. AVL树完整实现代码 二、红黑树1. 概念2. 性质3. 原理红黑树节点的定义默认约定插入情况一 &#xff08;u存在且为红&#xff09;情…

MySQL InnoDB 引擎底层解析(一)

6. InnoDB 引擎底层解析 MySQL 对于我们来说还是一个黑盒&#xff0c;我们只负责使用客户端发送请求并等待服务器返回结果&#xff0c;表中的数据到底存到了哪里&#xff1f;以什么格式存放的&#xff1f;MySQL 是以什么方式来访问的这些数据&#xff1f;这些问题我们统统不知…

创新案例|云服务平台HashiCorp是如何构建开源社区实现B2B增长飞轮

社区文化是HashiCorp企业文化的重要组成部分。虽然众多公司声称自己是社区驱动&#xff0c;但实际付诸行动的很少。与众不同的是&#xff0c;HashiCorp从一开始就将社区视为战略方针的核心&#xff0c;这也影响和塑造了公司今天的发展方向。社区不仅是执行策略之一&#xff0c;…

约数个数定理

首先在讲这个定理前&#xff0c;首先科普一下前置知识 约数&#xff1a; 何为约数&#xff0c;只要能整除n的整数就是n的约数&#xff0c;举个例子&#xff0c;3的约束是1和3因为1和3能整除3 质数&#xff1a; 除了这个数字本身和1以外没有其他因子的数字就叫质数&#xff…

pythorch的numel()函数计算模型大小与现存占用

本文解释简单给一个模型列子记录如何计算该模型参数量与模型显存占用情况&#xff0c;该文直接调用torchvision库的模型文件构建模型model&#xff0c;在使用parameters()函数遍历&#xff0c;并在遍历情况下使用numel()函数记录模型参数量与显存占用。 代码如下&#xff1a; …

日志维护库:loguru

在复杂的项目中&#xff0c;了解程序的运行状态变得至关重要。在这个过程中&#xff0c;日志记录&#xff08;logging&#xff09;成为我们追踪、调试和了解代码执行的不可或缺的工具。在python语言中常用logging日志库&#xff0c;但是logging日志库使用相对繁琐&#xff0c;在…

Linux远程工具专家推荐(二)

8. Apache Guacamole Apache Guacamole 是一款免费开源的无客户端远程桌面网关&#xff0c;支持 VNC、RDP 和 SSH 等标准协议。无需插件或客户端软件&#xff1b;只需使用 HTML5 Web 应用程序&#xff08;例如 Web 浏览器&#xff09;即可。 这意味着您的计算机的使用不受任何一…

ElasticSearch学习篇6_ES实践与Lucene对比及原理分析技术分享小记

前言 QBM、MFS的试题检索、试题查重、公式转换映射等业务场景以及XOP题库广泛使用搜索中间件&#xff0c;业务场景有着数据量大、对内容搜索性能要求高等特点&#xff0c;其中XOP题库数据量更是接近1亿&#xff0c;对检索性能以及召回率要求高。目前QBM、MFS使用的搜索中间件是…

LangChain 3使用Agent访问Wikipedia和llm-math计算狗的平均年龄

接着前两节的Langchain&#xff0c;继续实现Langchain中的Agent LangChain 实现给动物取名字&#xff0c;LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字 代码实现 # 从langchain库中导入模块 from langchain.llms import OpenAI # 从langchain.l…

软件测试: 测试用例

一. 软件测试四要素 测试环境,操作步骤,测试数据,预期结果 二. 基于需求进行测试用例的设计 基于需求设计测试用例是测试设计和开发测试用例的基础,第一步就要分析测试需求,验证需求是否正确,完整,无二义性,并且逻辑自洽.在需求正确的基础上细化测试需求,从测试需求提炼出一…

最全的接口自动化测试思路和实战:【推荐】混合测试自动化框架(关键字+数据驱动)

混合测试自动化框架(关键字数据驱动) 关键字驱动或表驱动的测试框架 这个框架需要开发数据表和关键字。这些数据表和关键字独立于执行它们的测试自动化工具&#xff0c;并可以用来“驱动&#xff02;待测应用程序和数据的测试脚本代码&#xff0c;关键字驱动测试看上去与手工测…

三天吃透Redis面试八股文

目录&#xff1a; Redis是什么&#xff1f;Redis优缺点&#xff1f;Redis为什么这么快&#xff1f;讲讲Redis的线程模型&#xff1f;Redis应用场景有哪些&#xff1f;Memcached和Redis的区别&#xff1f;为什么要用 Redis 而不用 map/guava 做缓存?Redis 数据类型有哪些&…

DrugMAP: molecular atlas and pharma-information of all drugs学习

DrugMAP&#xff1a;所有药物的分子图谱和制药信息 - PMC (nih.gov) DrugMAP: the molecular atlas and pharma-information of drugs (idrblab.net) 构建了一个描述药物分子图谱和药物信息的新数据库&#xff08;DrugMAP&#xff09;。它提供了>30 000种药物/候选药物的相…

前端调取摄像头并实现拍照功能

前言 最近接到的一个需求十分有意思&#xff0c;设计整体实现了前端仿 微信扫一扫 的功能。整理了一下思路&#xff0c;做一个分享。 tips: 如果想要实现完整扫一扫的功能&#xff0c;你需要掌握一些前置知识&#xff0c;这次我们先讲如何实现拍照并且保存的功能。 一. wind…