矩阵的QR分解

矩阵的QR分解

GramSchmidt

设存在 B = { x 1 , x 2 , … , x n } \mathcal{B}=\left\{\mathbf{x}_{1},\mathbf{x}_{2},\ldots,\mathbf{x}_{n}\right\} B={x1,x2,,xn}在施密特正交化过程中

  1. q 1 = x 1 ∣ ∣ x 1 ∣ ∣ q_1=\frac{x_1}{||x_1||} q1=∣∣x1∣∣x1
  2. q k = x k − ∑ i = 1 k − 1 < q i , x k > u i ∣ ∣ x k − ∑ i = 1 k − 1 < q i , x k > u i ∣ ∣ q_k=\frac{x_k-\sum_{i=1}^{k-1}\left< q_i,x_k\right>u_i}{||x_k-\sum_{i=1}^{k-1}\left< q_i,x_k\right>u_i||} qk=∣∣xki=1k1qi,xkui∣∣xki=1k1qi,xkui

对于任意一个矩阵 A m × n = { a 1 ∣ a 2 ∣ … ∣ a n } A_{m\times n}=\{a_1|a_2|\dots|a_n\} Am×n={a1a2an},其行向量线性无关,则存在 A = Q R A=QR A=QR,其 Q m × n = { q 1 ∣ q 2 ∣ … ∣ q n } Q_{m\times n}=\{q_1|q_2|\dots|q_n\} Qm×n={q1q2qn}矩阵是 R ( A ) R(A) R(A)的一组正交基, R m × m R_{m\times m} Rm×m是一个上三角矩阵,则
R = ( ν 1 q 1 ∗ a 2 q 1 ∗ a 3 ⋯ q 1 ∗ a n 0 ν 2 q 2 ∗ a 3 ⋯ q 2 ∗ a n 0 0 ν 3 ⋯ q 3 ∗ a n ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 ⋯ ν n ) \mathbf{R}=\begin{pmatrix}\nu_1&\mathbf{q}_1^*\mathbf{a}_2&\mathbf{q}_1^*\mathbf{a}_3&\cdots&\mathbf{q}_1^*\mathbf{a}_n\\0&\nu_2&\mathbf{q}_2^*\mathbf{a}_3&\cdots&\mathbf{q}_2^*\mathbf{a}_n\\0&0&\nu_3&\cdots&\mathbf{q}_3^*\mathbf{a}_n\\\vdots&\vdots&\vdots&\ddots&\vdots\\0&0&0&\cdots&\nu_n\end{pmatrix} R= ν1000q1a2ν200q1a3q2a3ν30q1anq2anq3anνn
其中 v 1 = ∣ ∣ a 1 ∣ ∣ , v k = ∣ ∣ a k − ∑ i = 1 k − 1 < q i , a k > q i ∣ ∣ for k>1 v_1=||a_1||,v_k=||a_k-\sum_{i=1}^{k-1}<q_i,a_k>q_i|| \quad\text{for k>1} v1=∣∣a1∣∣,vk=∣∣aki=1k1<qi,ak>qi∣∣for k>1

image-20231115204616157

Householder

酉矩阵:一个复数矩阵 U n × n U_{n\times n} Un×n它的行或列构成一个 C n C^n Cn的正交基,其中 U ∗ U = I , ∣ ∣ U x ∣ ∣ 2 = ∣ ∣ x ∣ ∣ 2 U^*U=I,||Ux||_2=||x||_2 UU=I∣∣Ux2=∣∣x2

对于非0向量 U ∈ C n × 1 U \in C^{n\times 1} UCn×1 ,则 U U U的正交投影是 P u = U U ∗ U ∗ U P_u=\frac{UU^*}{U^*U} Pu=UUUU,其垂直方向的投影是 P u ⊥ = I − U U ∗ U ∗ U P_{u\perp}=I-\frac{UU^*}{U^*U} Pu=IUUUU

初等反射( householder 变换)

其中对于 u ⊥ u^{\perp} u 的初等反射为 R = I − 2 U U ∗ U ∗ U R=I-2\frac{UU^*}{U^*U} R=I2UUUU

对于矩阵 A m × n = [ A ∗ 1 ∣ A ∗ 2 ∣ ⋯ ∣ A ∗ n ] \mathbf{A}_{m\times n}=[\mathbf{A}_{*1}|\mathbf{A}_{*2}|\cdots|\mathbf{A}_{*n}] Am×n=[A1A2An]

构建基本反射 R = I − 2 U U ∗ U ∗ U R=I-2\frac{UU^*}{U^*U} R=I2UUUU,其中 u = A ∗ 1 ± μ ∣ ∣ A ∗ 1 ∣ ∣ e 1 , μ = { 1 if  x 1  is real , x 1 / ∣ x 1 ∣ if  x 1  is not real , u=A_{*1}\pm\mu||A_{*1}||e_1,\quad\left.\mu=\left\{\begin{matrix}1&\text{if }x_1\text{ is real},\\x_1/|x_1|&\text{if }x_1\text{ is not real},\end{matrix}\right.\right. u=A1±μ∣∣A1∣∣e1,μ={1x1/∣x1if x1 is real,if x1 is not real,

根据householder变换可得 R 1 A ∗ 1 = ∓ μ ∥ A ∗ 1 ∥ e 1 = ( t 11 , 0 , ⋯   , 0 ) T \mathbf{R}_1\mathbf{A}_{*1}=\mp\mu\|\mathbf{A}_{*1}\|\mathbf{e}_1=(t_{11},0,\cdots,0)^T R1A1=μA1e1=(t11,0,,0)T

所以 R 1 A = [ R 1 A ∗ 1 ∣ R 1 A ∗ 2 ∣ ⋯ ∣ R 1 A ∗ n ] = ( t 11 t 1 T 0 A 2 ) \left.\mathbf{R}_1\mathbf{A}=[\mathbf{R}_1\mathbf{A}_{*1}|\mathbf{R}_1\mathbf{A}_{*2}|\cdots|\mathbf{R}_1\mathbf{A}_{*n}]=\left(\begin{array}{cc}t_{11}&\mathbf{t}_1^T\\\mathbf{0}&\mathbf{A}_2\end{array}\right.\right) R1A=[R1A1R1A2R1An]=(t110t1TA2),其中 A 2 A_2 A2 是一个 ( m − 1 × n − 1 ) (m-1\times n-1) (m1×n1)的矩阵

若同时对 A 2 A_2 A2矩阵进行操作可以得到一个上三角矩阵 ( m = n ) (m=n) (m=n),即 P A = T PA=T PA=T,其中 P P P矩阵为elementary reflector矩阵的乘积, T T T矩阵为上梯形

image-20231116091638599

image-20231116091656605

Givens 旋转

image-20231115234630004

对于正交矩阵 P P P形式如上,表示在平面 ( i , j ) (i,j) (i,j)上旋转,其中 s 2 + c 2 = 1 s^2+c^2=1 s2+c2=1

对于向量 X = { x 1 , x 2 … , x n } T X=\{x_1,x_2\dots,x_n\}^T X={x1,x2,xn}T P i j X = { x 1 , x 2 , … , c x i + s x j , … , − s x i + c x j , … , x n } T P_{ij}X=\{x_1,x_2,\dots,cx_i+sx_j,\dots,-sx_i+cx_j,\dots,x_n\}^T PijX={x1,x2,,cxi+sxj,,sxi+cxj,,xn}T,易知旋转矩阵乘某一个向量,其只有在该旋转平面上的值发生改变,若存在:
c = x i x i 2 + x j 2 , s = x j x i 2 + x j 2 c=\frac{x_i}{\sqrt{x_i^2+x_j^2}},s=\frac{x_j}{\sqrt{x_i^2+x_j^2}} c=xi2+xj2 xi,s=xi2+xj2 xj
P i j X = { x 1 , x 2 , … , x i 2 + x j 2 , … , 0 , … , x n } T P_{ij}X=\{x_1,x_2,\dots,\sqrt{x_i^2+x_j^2},\dots,0,\dots,x_n\}^T PijX={x1,x2,,xi2+xj2 ,,0,,xn}T

由此可以实现消去向量的第j个值,即存在:
P 12 x = ( x 1 2 + x 2 2 0 x 3 x 4 ⋮ x n ) ,   P 13 P 12 x = ( x 1 2 + x 2 2 + x 3 2 0 x 4 ⋮ x n ) ,   … ,   P 1 n ⋯ P 13 P 12 x = ( ∥ x ∥ 0 0 ⋮ 0 ) . \mathbf P_{12}\mathbf x=\begin{pmatrix}\sqrt{x_1^2+x_2^2}\\0\\x_3\\x_4\\\vdots\\x_n\end{pmatrix},~\mathbf P_{13}\mathbf P_{12}\mathbf x=\begin{pmatrix}\sqrt{x_1^2+x_2^2+x_3^2}\\0\\x_4\\\vdots\\x_n\end{pmatrix},~\ldots,~\mathbf P_{1n}\cdots\mathbf P_{13}\mathbf P_{12}\mathbf x=\begin{pmatrix}\|\mathbf x\|\\0\\0\\\vdots\\0\end{pmatrix}. P12x= x12+x22 0x3x4xn , P13P12x= x12+x22+x32 0x4xn , , P1nP13P12x= x000 .

A A A矩阵是非奇异矩阵,则可以利用householder、givens以及Gram-schmidt来产生一个正交矩阵 Q Q Q以及一个上三角矩阵 R R R其对角线上全为正数,可以得到形如 A = Q R A=QR A=QR的形式

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/164359.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

资深测试总结,现在软件测试有未来吗?“你“的底气在哪里?

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 1、为什么会有 “…

【C刷题】day7

&#x1f3a5; 个人主页&#xff1a;深鱼~&#x1f525;收录专栏&#xff1a;【C】每日一练&#x1f304;欢迎 &#x1f44d;点赞✍评论⭐收藏 一、选择题 1、以下对C语言函数的有关描述中&#xff0c;正确的有【多选】&#xff08; &#xff09; A: 在C语言中&#xff0c;一…

内容运营工具:标签体系

一.分类和标签的区别 ■标签是扁平的&#xff0c;分类是层级的。 ■标签是精确的&#xff0c;分类是粗糙的。 ■标签是多维的&#xff0c;分类是一维的。 二.标签的本质&#xff1a;元数据 事实上&#xff0c;在数据领域&#xff0c;有一个鼎鼎大名的词汇与标签极其雷同&…

【C++】:模板进阶

朋友们、伙计们&#xff0c;我们又见面了&#xff0c;本期来给大家解读一下有关C模板进阶的知识点&#xff0c;如果看完之后对你有一定的启发&#xff0c;那么请留下你的三连&#xff0c;祝大家心想事成&#xff01; C 语 言 专 栏&#xff1a;C语言&#xff1a;从入门到精通 数…

qsort函数使用方法总结

目录 一、qsort函数原型 二、compar参数 三、各种类型的qsort排序 1. int 数组排序 2. 结构体排序 3. 字符串指针数组排序 4. 字符串二维数组排序 四、回调函数 1. 什么是回调函数 2. 为什么要用回调函数&#xff1f; 3. 怎么使用回调函数&#xff1f; 4.下面是…

皮肤性病科专家谭巍主任提出HPV转阴后饮食七点建议

HPV转阴是每一位感染者都期盼的&#xff0c;因为转阴所以健康&#xff0c;只有转为阴性才意味着不具备传染性&#xff0c;从此也不必再害怕将病毒传染给家人的风险&#xff0c;也不必再担忧持续感染而引发的健康风险。总之&#xff0c;HPV转阴是预示感染者恢复健康与否的主要标…

不知道如何制作产品图册的,赶紧收藏住!

产品图册是展示产品外观、功能和特点的重要工具&#xff0c;对于销售和推广产品至关重要。然而&#xff0c;制作一本高质量的产品图册并不是一件容易的事情。如果你没有经验或者不确定如何着手&#xff0c;那么这篇文章将为你提供一些实用的建议和技巧&#xff0c;帮助你轻松制…

AtCoder Beginner Contest 329 题解A~F

A - Spread 输入字符串&#xff0c;字符之间加上空格输出 B - Next 输出数组当中第二大的数 C - Count xxx 统计每个字符出现过的最长长度&#xff0c;再累加即可 #include<bits/stdc.h> #pragma GCC optimize("Ofast") #define INF 0x3f3f3f3f #define I…

Flutter 中数据存储的四种方式

在 Flutter 中&#xff0c;存储是指用于本地和远程存储和管理数据的机制。以下是 Flutter 中不同存储选项的概述和示例。 Shared Preferences&#xff08;本地键值存储&#xff09; Shared Preferences 是一种在本地存储少量数据&#xff08;例如用户首选项或设置&#xff09…

漂亮的pyqt6皮肤 PyOneDark_Qt_Widgets_Modern_GUIPublic

大家先看看界面图&#xff0c;真的很漂亮&#xff1a; github地址&#xff1a;GitHub - Wanderson-Magalhaes/PyOneDark_Qt_Widgets_Modern_GUI 作者还录了教程&#xff1a; TUTORIALS: Tutorial 01: https://youtu.be/QQGlTGYCMg0 Tutorial 02: https://youtu.be/LwKre2proDk…

GMEL:基于地理上下文嵌入的OD流预测

1 文章信息 文章题为“Learning Geo-Contextual Embeddings for Commuting Flow Prediction”&#xff0c;是一篇发表于The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-20)的一篇论文。该论文主要针对交通中OD流预测任务&#xff0c;从地理上下文信息中…

【机器学习基础】正则化

&#x1f680;个人主页&#xff1a;为梦而生~ 关注我一起学习吧&#xff01; &#x1f4a1;专栏&#xff1a;机器学习 欢迎订阅&#xff01;后面的内容会越来越有意思~ ⭐特别提醒&#xff1a;针对机器学习&#xff0c;特别开始专栏&#xff1a;机器学习python实战 欢迎订阅&am…

鸿蒙:实现两个Page页面跳转

效果展示 这篇博文在《鸿蒙&#xff1a;从0到“Hello Harmony”》基础上实现两个Page页面跳转 1.构建第一个页面 第一个页面就是“Hello Harmony”&#xff0c;把文件名和显示内容都改一下&#xff0c;改成“FirstPage”&#xff0c;再添加一个“Next”按钮。 Entry Compone…

⑩⑥ 【MySQL】详解 触发器TRIGGER,协助 确保数据的完整性,日志记录,数据校验等操作。

个人简介&#xff1a;Java领域新星创作者&#xff1b;阿里云技术博主、星级博主、专家博主&#xff1b;正在Java学习的路上摸爬滚打&#xff0c;记录学习的过程~ 个人主页&#xff1a;.29.的博客 学习社区&#xff1a;进去逛一逛~ 触发器 ⑩⑥ 【MySQL】触发器详解1. 什么是触发…

在前端开发中,什么是CDN(Content Delivery Network)?它的作用是什么?

聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 欢迎来到前端入门之旅&#xff01;感兴趣的可以订阅本专栏哦&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…

基于金鹰算法优化概率神经网络PNN的分类预测 - 附代码

基于金鹰算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于金鹰算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于金鹰优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神经网络的光滑…

牛客网刷题笔记三 寻找第K大+两数之和+合并两个排序的链表+用两个栈实现队列

算法题牛客网NC88 寻找第K大 题目&#xff1a; 思路就是做个排序&#xff0c;要求时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn)&#xff0c;因此选用快排。代码&#xff1a; class Solution:def quickSort(self, a, start, end):if start > end:returnval a[start]…

测试老鸟总结,Web/APP与接口测试测试流程总结,避背黑锅...

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 1、web测试流程 …

集合框架面试题

一、集合容器的概述 1. 什么是集合 集合框架&#xff1a;用于存储数据的容器。 集合框架是为表示和操作集合而规定的一种统一的标准的体系结构。 任何集合框架都包含三大块内容&#xff1a; 对外的接口、接口的实现和对集合运算的算 法。 接口&#xff1a;表示集合的抽象数据…

量化交易:借助talib使用技术分析指标

什么是技术分析&#xff1f; 所谓股票的技术分析&#xff0c;是相对于基本面分析而言的。基本分析法着重于对一般经济情况以及各个公司的经营管理状况、行业动态等因素进行分析&#xff0c;以此来研究股票的价值&#xff0c;衡量股价的高低。而技术分析则是透过图表或技术指标…