基于金鹰算法优化概率神经网络PNN的分类预测 - 附代码

基于金鹰算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于金鹰算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于金鹰优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用金鹰算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于金鹰优化的PNN网络

金鹰算法原理请参考:https://blog.csdn.net/u011835903/article/details/121209371

利用金鹰算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

金鹰参数设置如下:

%% 金鹰参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述

从结果来看,金鹰-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/164335.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

牛客网刷题笔记三 寻找第K大+两数之和+合并两个排序的链表+用两个栈实现队列

算法题牛客网NC88 寻找第K大 题目: 思路就是做个排序,要求时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn),因此选用快排。代码: class Solution:def quickSort(self, a, start, end):if start > end:returnval a[start]…

测试老鸟总结,Web/APP与接口测试测试流程总结,避背黑锅...

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 1、web测试流程 …

集合框架面试题

一、集合容器的概述 1. 什么是集合 集合框架:用于存储数据的容器。 集合框架是为表示和操作集合而规定的一种统一的标准的体系结构。 任何集合框架都包含三大块内容: 对外的接口、接口的实现和对集合运算的算 法。 接口:表示集合的抽象数据…

量化交易:借助talib使用技术分析指标

什么是技术分析? 所谓股票的技术分析,是相对于基本面分析而言的。基本分析法着重于对一般经济情况以及各个公司的经营管理状况、行业动态等因素进行分析,以此来研究股票的价值,衡量股价的高低。而技术分析则是透过图表或技术指标…

低代码在ERP中的理解与应用:提升开发效率与业务灵活性

企业资源规划(ERP)指通过融合不同部门的信息和流程,提升企业效率、融洽运营的管理体系。ERP系统通过提供一套集成化应用程序,助力企业管理工作流程,包含选购、库存、销售、生产规划等。 低代码(Low-Code&a…

网页视频下载工具 iTubeGo mac中文版软件特色

iTubeGo YouTube Downloader mac是一款功能强大的YouTube视频下载工具。 iTubeGo YouTube Downloader mac软件特色 多种格式支持:iTubeGo YouTube Downloader可以将YouTube视频下载为多种常见的视频和音频格式,包括MP4、MP3、AVI、FLV、MOV、WMV等&…

基于猕猴Spike运动解码的不同解码方法性能对比

公开数据集中文版详细描述 参考前文:https://editor.csdn.net/md/?not_checkout1&spm1011.2124.3001.6192神经元Spike信号分析 参考前文:https://blog.csdn.net/qq_43811536/article/details/134359566?spm1001.2014.3001.5501神经元运动调制分析 …

心怀祖国放眼世界 爱国人士华国中应邀参加美国旧金山2023(APEC)峰会

据相关媒体美国旧金山报道:2023亚太经合组织(APEC)领导人非正式会议将于11月15日至17日在美国旧金山召开。11月11日,本年度APEC高级财政官员和部长会晤在旧金山率先启动,APEC CEO峰会将于11月14日至16日开幕。著名爱国人士、亚太一…

HR人才测评,提高招聘效率降低用人风险

随着社会的不断进步,越来越多的企业在人力资源管理中,引入人才测评工具。人才是构成一个企业的基础,是企业不断发展的保障,同时,人才也是一个企业的核心竞争力之一。所以,人才的素质对一个企业至关重要。现…

CICD 持续集成与持续交付(2)

目录 gitlab 部署 jenkins 部署 配置 实时触发 自动化构建docker镜像 通过ssh插件交付任务 添加jenkins节点 RBAC pipeline jenkins结合ansible参数化构建 安装ansible 新建gitlab项目 jenkins新建项目playbook gitlab 部署 虚拟机最小需求:4G内存 4核cpu 下载&…

MySQL锁

概述 介绍 锁是计算机协调多个进程或线程并发访问某一资源的机制,在数据库中,除传统的计算资源(CPU、IO)的争用除外,数据也是一种供许多用户共享的资源。保证数据并发访问的一致性、有效性是所有数据库必须解决的一个…

Halcon (4):如何开始自学

文章目录 文章专栏前言Halcon文档Halcon基础案例文档英语阅读建议 结论 文章专栏 Halcon开发 前言 在我完成上一篇代码,halcon基础窗口事件写完了之后,我已经基本掌握了如何写一个简单的halcon程序。后面我学习新的知识的时候感觉遇到了瓶颈。因为网上没…

pom.xml格式化快捷键

在软件开发和编程领域,"格式化"通常指的是将代码按照一定的规范和风格进行排列,以提高代码的可读性和维护性。格式化代码有助于使代码结构清晰、统一,并符合特定的编码规范。 格式化可以包括以下方面: 缩进&#xff1a…

直流电机干扰的产生-EMC和EMI

直流电机干扰的产生-EMC和EMI 干扰的产生电路滤波处理EMC处理措施 干扰的产生 带电刷的电动机,由于在电刷切换时,电动机线圈中的电流不能突变,当一路线圈通电断开时,会在该线圈的两端产生较高的反电动势,这个电动势会…

MongoDB随记

MongoDB 1、简单介绍2、基本术语3、shard分片概述背景架构路由功能chunk(数据分片)shard key(分片键值) 4、常用命令 1、简单介绍 MongoDB是一个分布式文件存储的数据库,介于关系数据库和非关系数据库之间&#xff0c…

『亚马逊云科技产品测评』活动征文|借助AWS EC2搭建服务器群组运维系统Zabbix+spug

授权声明:本篇文章授权活动官方亚马逊云科技文章转发、改写权,包括不限于在 Developer Centre, 知乎,自媒体平台,第三方开发者媒体等亚马逊云科技官方渠道。 本文基于以下软硬件工具: aws ec2 frp-0.52.3 zabbix 6…

Typecho框架漏洞

这里说的框架漏洞只适用于1.2.0版本及以下的版本 这里说的漏洞是xss漏洞,学过渗透的应该都学过,我在这里就不过多阐述了,下面我们直接进入正题 直接在这个地方插入网址,后面再接上html代码即可,代码如下: …

『力扣刷题本』:二叉树的中序遍历

一、题目 给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。 示例 1: 输入:root [1,null,2,3] 输出:[1,3,2]示例 2: 输入:root [] 输出:[]示例 3: 输入:root [1…

MySQL 的执行原理(三)

5.4. InnoDB 中的统计数据 我们前边唠叨查询成本的时候经常用到一些统计数据,比如通过 SHOW TABLE STATUS 可以看到关于表的统计数据,通过 SHOW INDEX 可以看到关于索引 的统计数据,那么这些统计数据是怎么来的呢?它们是以什么方…

Scalable Exact Inference in Multi-Output Gaussian Processes

Orthogonal Instantaneous Linear Mixing Model TY are m-dimensional summaries,ILMM means ‘Instantaneous Linear Mixing Model’,OILMM means ‘Orthogonal Instantaneous Linear Mixing Model’ 辅助信息 作者未提供代码