基于原子搜索算法优化概率神经网络PNN的分类预测 - 附代码

基于原子搜索算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于原子搜索算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于原子搜索优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用原子搜索算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于原子搜索优化的PNN网络

原子搜索算法原理请参考:https://blog.csdn.net/u011835903/article/details/112909360

利用原子搜索算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

原子搜索参数设置如下:

%% 原子搜索参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,原子搜索-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/162868.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

windows安装Git【超详细图解】

目录 git安装地址 git配置 提交代码时使用的命令 git安装地址 Git for WindowsWe bring the awesome Git VCS to Windowshttps://gitforwindows.org/ 打开终端,输入git --version git配置 git config --global user.name "用户名" git config --g…

镀膜与干刻中的平均自由程是什么?

在芯片制造中,镀膜和干刻是其中的重要环节,通常要用到CVD,RIE等技术,对材料表面进行纳米级的精细操作。在这些工序中,原子,分子,离子等,会在气体或真空中进行自由运动,直…

基础模型的自然语言处理能力综述

NLP作为一个领域为基础模型开辟了道路。虽然这些模型在标准基准测试中占据主导地位,但这些模型目前获得的能力与那些将语言描述为人类交流和思维的复杂系统的能力之间存在明显的差距。针对这一点,我们强调语言变异的全部范围(例如&#xff0c…

Yolov5安装运行过程中出现的问题

Yolov5安装运行过程中出现的问题合集 安装问题pip 安装 requirements.txtcmd下如何退出python&#xff1f;升级numpy protobuf版本过高AttributeError: Can’t get attribute ‘SPPF’ on <module ‘models.common’ from 地址找不到图片NameError: name warnings is not de…

想要精通算法和SQL的成长之路 - 摩尔投票法的运用

想要精通算法和SQL的成长之路 - 摩尔投票法的运用 前言一. 多数元素1.1 摩尔投票法 二. 多数元素II2.1 分析 前言 想要精通算法和SQL的成长之路 - 系列导航 一. 多数元素 原题链接 1.1 摩尔投票法 简单来说&#xff0c;假设数组 num 的众数是 x&#xff0c;数组长度为n。 有…

基于Java+SpringBoot+Vue3+Uniapp+TypeScript(有视频教程)前后端分离健身预约系统设计与实现

博主介绍&#xff1a;✌全网粉丝5W&#xff0c;全栈开发工程师&#xff0c;从事多年软件开发&#xff0c;在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战&#xff0c;博主也曾写过优秀论文&#xff0c;查重率极低&#xff0c;在这方面有丰富的经验…

UE5制作场景时的小技巧和注意事项

UE5制作场景时的小技巧和注意事项 一、场景相关 1.1灯光 1.1.1构建完光照,发现场景都是黑的 可能是所有灯光是静态灯光,把skylight改为动态,如果改完之后还是黑色的,那就在构建一次,就应该没问题了 1.1.2场景中有多个动态光会造成阴影闪烁 需要将skylight变为固定 1…

C语言之for while语句详解

C语言之for while语句详解 文章目录 C语言之for while语句详解简介1 while语句1.1while语句的格式1.2 while语句的实践 2 for2.1 for语句格式2.2 for循环的实践 3 do while3.1 do while语句格式3.2 do while循环的实践 3 循环中break和continue3.1 while语句中的break和continu…

STM32与ZigBee无线通信技术在工业自动化中的应用

工业自动化是指利用电子技术、计算机技术和通信技术等手段&#xff0c;对工厂、设备和生产过程进行自动化控制和管理的过程。在工业自动化中&#xff0c;可靠的无线通信技术对于实时数据的传输和设备的协同控制至关重要。本文将介绍STM32微控制器与ZigBee无线通信技术在工业自动…

君正X2100 读取CHIP_ID

每个处理器会有一个唯一的ID&#xff0c;这个ID可用做产品序列号&#xff0c;或其它。 X21000的CHIP_ID存放于芯片内部的efuse中&#xff0c;efuse是一次性可可编程存储器&#xff0c;初始值为全0&#xff0c;只能将0改为1&#xff0c;不能将1改为0。芯片出厂前会被写入一些信…

WPF中行为与触发器的概念及用法

完全来源于十月的寒流&#xff0c;感谢大佬讲解 一、行为 (Behaviors) behaviors的简单测试 <Window x:Class"Test_05.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winf…

STL简介

> 作者简介&#xff1a;დ旧言~&#xff0c;目前大二&#xff0c;现在学习Java&#xff0c;c&#xff0c;c&#xff0c;Python等 > 座右铭&#xff1a;松树千年终是朽&#xff0c;槿花一日自为荣。 > 目标&#xff1a;了解c中的STL库 > 毒鸡汤&#xff1a;路难行&a…

22款奔驰S450L升级流星雨大灯 感受最高配的数字大灯

“流星雨”数字大灯&#xff0c;极具辨识度&#xff0c;通过260万像素的数字微镜技术&#xff0c;实现“流星雨”仪式感与高度精确的光束分布&#xff1b;在远光灯模式下&#xff0c;光束精准度更达之前84颗LED照明的100倍&#xff0c;更新增坡道照明功能&#xff0c;可根据导航…

UE 程序化网格 计算横截面 面积

首先在构造函数内加上程序化网格&#xff0c;然后复制网格体到程序化网格组件上&#xff0c;将Static Mesh&#xff08;类型StaticMeshActor&#xff09;的静态网格体组件给到程序化网格体上 然后把StaticMesh&#xff08;类型为StaticMeshActor&#xff09;Instance暴漏出去 …

原型网络Prototypical Network的python代码逐行解释,新手小白也可学会!!-----系列6 (承接系列5)

文章目录 一、原始代码---随机采样和评估模型二、详细解释分析每一行代码 一、原始代码—随机采样和评估模型 def randomSample(self,D_set): #从D_set随机取支持集和查询集&#xff08;20个类中的其中一个类&#xff0c;shape为[20,105,105]&#xff09;index_list list(ran…

复旦大学EMBA深度链接深圳科创产业:聚焦智联,产融未来

作为科创成就的经济大区&#xff0c;深圳南山区通过跨界创新研发生态链条&#xff0c;领跑科创产业创新&#xff0c;以187.5平方公里的面积&#xff0c;雄踞着204家上市公司&#xff0c;地均生产总值产出达到了40.7亿元&#xff0c;相当于每平方公里出产超过1家上市公司&#x…

Java项目实战《苍穹外卖》 二、项目搭建

当我痛苦地站在你的面前 你不能说我一无所有 你不能说我两手空空 系列文章目录 苍穹外卖是黑马程序员2023年的Java实战项目&#xff0c;作为业余练手用&#xff0c;需要源码或者课程的可以找我&#xff0c;无偿分享 Java项目实战《苍穹外卖》 一、项目概述Java项目实战《苍穹外…

B-2:Linux系统渗透提权

B-2:Linux系统渗透提权 服务器场景:Server2204(关闭链接) 用户名:hacker 密码:123456 1.使用渗透机对服务器信息收集,并将服务器中SSH服务端口号作为flag提交; 使用nmap扫描,发现ssh服务端口为2283 Flag:2283 2.使用渗透机对服务器信息收集,并将服务器中…

复合、委托、继承

1. 单例模式 静态实例对象在getInstance函数中定义&#xff0c;这样只有在调用函数时才会生成对象 2. 复合 1. 类中封装另一个类某些功能&#xff1b; 2. 构造、析构的调用过程 指明了复合中如何调用被包含类的构造函数&#xff0c;可以直接写在初始化列表位置&#xff1b; 3.…

剑指JUC原理-19.线程安全集合

&#x1f44f;作者简介&#xff1a;大家好&#xff0c;我是爱吃芝士的土豆倪&#xff0c;24届校招生Java选手&#xff0c;很高兴认识大家&#x1f4d5;系列专栏&#xff1a;Spring源码、JUC源码&#x1f525;如果感觉博主的文章还不错的话&#xff0c;请&#x1f44d;三连支持&…