基于乌燕鸥算法优化概率神经网络PNN的分类预测 - 附代码

基于乌燕鸥算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于乌燕鸥算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于乌燕鸥优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用乌燕鸥算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于乌燕鸥优化的PNN网络

乌燕鸥算法原理请参考:https://blog.csdn.net/u011835903/article/details/111936344

利用乌燕鸥算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

乌燕鸥参数设置如下:

%% 乌燕鸥参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,乌燕鸥-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/161203.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

IPSecGRE

IPSec&GRE 手工方式建立IPSec隧道组网实验拓扑配置步骤第一步配置IP地址第二步配置静态路由第三步配置IPSec 抓包测试 GRE Over IPSec功能的配置组网实验拓扑配置命令 配置GRE使用静态路由组网图实验拓扑配置步骤1.配置RouterA2.配置RouterB3.配置RouterC4.验证配置结果 手…

Python使用大连理工情感本体提取文本的情感倾向

import pandas as pd # 导入词典 df pd.read_excel(Sentiment_dictionary\大连理工情感词汇本体\情感词汇本体.xlsx) # 我们暂时只使用 [词语,词性种类,词义数,词义序号,情感分类,强度,极性] df df[[词语, 词性种类, 词义数, 词义序号, 情感分类, 强度, 极性]] df.head()# 按…

Swift 如何打造兼容新老系统的字符串分割(split)方法

0. 概览 在 Swift 的开发中,我们经常要与字符串打交道。其中一个常见的操作就是用特定的“分隔符”来分割字符串,这里分隔符可能不仅仅是字符,而是多字符组成的字符串。 从 iOS 16 开始, 新增了对应的方法来专注此事。不过&am…

计算机毕业设计选题推荐-个人健康微信小程序/安卓APP-项目实战

✨作者主页:IT研究室✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…

持续集成交付CICD:Jenkins通过API触发流水线

目录 一、理论 1.HTTP请求 2.调用接口的方法 3.HTTP常见错误码 二、实验 1.Jenkins通过API触发流水线 三、问题 1.如何拿到上一次jenkinsfile文件进行自动触发流水线 一、理论 1.HTTP请求 (1)概念 HTTP超文本传输协议,是确保服务器…

美元美债双螺旋系统崩溃的小尺度预演

号外:教链内参11.16《polygon铭文突然走红的背后》 众所周知,当代美元体系已经从二战后布雷顿森林体系的黄金-美元单向锚定系统转变为美债-美元双螺旋系统。 即,在旧系统中,由黄金提供价值锚,而美元仅仅作为黄金的代金…

Linux本地docker一键部署traefik+内网穿透工具实现远程访问Web UI管理界面

文章目录 前言1. Docker 部署 Trfɪk2. 本地访问traefik测试3. Linux 安装cpolar4. 配置Traefik公网访问地址5. 公网远程访问Traefik6. 固定Traefik公网地址 前言 Trfɪk 是一个云原生的新型的 HTTP 反向代理、负载均衡软件,能轻易的部署微服务。它支持多种后端 (D…

软磁交流测试仪系统磁参量指标

1. 主要应用 2. 软磁交流测试仪磁参量指标 被测参数 最佳测量不确定度 ( k 2 ) 1 kHz 最佳测量重复性 主要动态磁特性参数 Ps 2.0% 1.0% μa 3.0% 1.0% Bm 1.0% 0.5% Hm 1.0% 0.5% δ 5.0% 1.5% 其他磁特性参数供参考 Br 2.0% 1.0% Hc 3.0% 1.0% μ…

开发一款回合制游戏,需要注意什么?

随着游戏行业的蓬勃发展,回合制游戏因其深度的策略性和令人着迷的游戏机制而受到玩家们的热烈欢迎。如果你计划投身回合制游戏的开发领域,本文将为你提供一份详细的指南,从游戏设计到发布,助你成功打造一款引人入胜的游戏。 1. 游…

YOLOv8独家改进: Inner-IoU基于辅助边框的IoU损失,高效结合 GIoU, DIoU, CIoU,SIoU 等 | 2023.11

💡💡💡本文独家改进:Inner-IoU引入尺度因子 ratio 控制辅助边框的尺度大小用于计算损失,并与现有的基于 IoU ( GIoU, DIoU, CIoU,SIoU )损失进行有效结合 推荐指数:5颗星 新颖指数:5颗星 💡💡💡Yolov8魔术师,独家首发创新(原创),适用于Yolov5…

Azure Machine Learning - Azure AI 搜索中的矢量搜索

矢量搜索是一种信息检索方法,它使用内容的数字表示形式来执行搜索方案。 由于内容是数字而不是纯文本,因此搜索引擎会匹配与查询最相似的矢量,而不需要匹配确切的字词。本文简要介绍了 Azure AI 搜索中的矢量支持。 其中还解释了与其他 Azure…

【js作用域】JavaScript中作用域的是什么?:从编译时其承担什么角色和查询作用域中的变量的角度解析作用域

😁 作者简介:一名大四的学生,致力学习前端开发技术 ⭐️个人主页:夜宵饽饽的主页 ❔ 系列专栏:JavaScript进阶指南 👐学习格言:成功不是终点,失败也并非末日,最重要的是继…

Python语言这么火热,其实具有以下特点

Python语言具有以下特点: 简单易学:Python语言是一种解释型语言,语法简单明了,代码简洁,易于理解,可以一边编码一边运行,非常合适编程初学者。门槛较低:Python不需要复杂的环境配置…

null 不好,我真的推荐你使用 Optional

"Null 很糟糕." - Doug Lea。 Doug Lea 是一位美国的计算机科学家,他是 Java 平台的并发和集合框架的主要设计者之一。他在 2014 年的一篇文章中说过:“Null sucks.”1,意思是 null 很糟糕。他认为 null 是一种不明确的表示&#x…

持续集成交付CICD:Jenkins Sharedlibrary 共享库

目录 一、理论 1.共享库 2.共享库配置 3.使用共享库 4.共享库扩展 二、实验 1.连接共享库 2.使用共享库 三、问题 1.路径报错 2.readJSON 报错 一、理论 1.共享库 (1)概念 1)共享库这并不是一个全新的概念,其实在编…

electron使用better-sqlite3打包失败(electron打包有进程没有界面)

remove *\chrome_100_percent.pak: Access is denied. 解决: 管理员权限执行:taskkill /IM 你的进程名.exe /F,再次执行build electron使用better-sqlite3打包后有进程没有界面 原因是代码及依赖包安装有误,模块丢失。主要分享的…

企业月结快递管理教程

什么是月结快递?员工可能不清楚,但是企业行政人员应该很熟悉。各大快递公司为了留住商企这些大客户,推出了月结协议寄件,企业可以和快递公司签订月结协议,员工寄件不需要当场结算快递费,而是将快递费挂在企…

Git详解及 github使用

1.1 关于版本控制 开始之前先看一个没有版本控制的例子 1.1.1 本地版本控制 本地版本控制系统 许多人习惯用复制整个项目目录的方式来保存不同的版本,或许还会改名加上备份时间以示区别。这么做唯一的 好处就是简单,但是特别容易犯错。有时候会混淆所在…

Android 解决CameraView叠加2个以上滤镜拍照黑屏的BUG (二)

1. 前言 这段时间,在使用 natario1/CameraView 来实现带滤镜的预览、拍照、录像功能。 由于CameraView封装的比较到位,在项目前期,的确为我们节省了不少时间。 但随着项目持续深入,对于CameraView的使用进入深水区,逐…

windows快捷方式图标变成空白

今天突然有客户说应用程序快捷方式图标变成了空白,就研究了一下,网上找了一下很多都说是什么图标缓存有问题,试过之后发现并不能解决问题。 然后发现用户的文件上都一把黄色的小锁的标志,查了一下说是文件属性里面设置加密之后就会…